This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sine of a negative is the negative of the sine. (Contributed by NM, 30-Apr-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sinneg | ⊢ ( 𝐴 ∈ ℂ → ( sin ‘ - 𝐴 ) = - ( sin ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negcl | ⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) | |
| 2 | sinval | ⊢ ( - 𝐴 ∈ ℂ → ( sin ‘ - 𝐴 ) = ( ( ( exp ‘ ( i · - 𝐴 ) ) − ( exp ‘ ( - i · - 𝐴 ) ) ) / ( 2 · i ) ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐴 ∈ ℂ → ( sin ‘ - 𝐴 ) = ( ( ( exp ‘ ( i · - 𝐴 ) ) − ( exp ‘ ( - i · - 𝐴 ) ) ) / ( 2 · i ) ) ) |
| 4 | sinval | ⊢ ( 𝐴 ∈ ℂ → ( sin ‘ 𝐴 ) = ( ( ( exp ‘ ( i · 𝐴 ) ) − ( exp ‘ ( - i · 𝐴 ) ) ) / ( 2 · i ) ) ) | |
| 5 | 4 | negeqd | ⊢ ( 𝐴 ∈ ℂ → - ( sin ‘ 𝐴 ) = - ( ( ( exp ‘ ( i · 𝐴 ) ) − ( exp ‘ ( - i · 𝐴 ) ) ) / ( 2 · i ) ) ) |
| 6 | ax-icn | ⊢ i ∈ ℂ | |
| 7 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) | |
| 8 | 6 7 | mpan | ⊢ ( 𝐴 ∈ ℂ → ( i · 𝐴 ) ∈ ℂ ) |
| 9 | efcl | ⊢ ( ( i · 𝐴 ) ∈ ℂ → ( exp ‘ ( i · 𝐴 ) ) ∈ ℂ ) | |
| 10 | 8 9 | syl | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · 𝐴 ) ) ∈ ℂ ) |
| 11 | negicn | ⊢ - i ∈ ℂ | |
| 12 | mulcl | ⊢ ( ( - i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( - i · 𝐴 ) ∈ ℂ ) | |
| 13 | 11 12 | mpan | ⊢ ( 𝐴 ∈ ℂ → ( - i · 𝐴 ) ∈ ℂ ) |
| 14 | efcl | ⊢ ( ( - i · 𝐴 ) ∈ ℂ → ( exp ‘ ( - i · 𝐴 ) ) ∈ ℂ ) | |
| 15 | 13 14 | syl | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( - i · 𝐴 ) ) ∈ ℂ ) |
| 16 | 10 15 | subcld | ⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ ( i · 𝐴 ) ) − ( exp ‘ ( - i · 𝐴 ) ) ) ∈ ℂ ) |
| 17 | 2mulicn | ⊢ ( 2 · i ) ∈ ℂ | |
| 18 | 2muline0 | ⊢ ( 2 · i ) ≠ 0 | |
| 19 | divneg | ⊢ ( ( ( ( exp ‘ ( i · 𝐴 ) ) − ( exp ‘ ( - i · 𝐴 ) ) ) ∈ ℂ ∧ ( 2 · i ) ∈ ℂ ∧ ( 2 · i ) ≠ 0 ) → - ( ( ( exp ‘ ( i · 𝐴 ) ) − ( exp ‘ ( - i · 𝐴 ) ) ) / ( 2 · i ) ) = ( - ( ( exp ‘ ( i · 𝐴 ) ) − ( exp ‘ ( - i · 𝐴 ) ) ) / ( 2 · i ) ) ) | |
| 20 | 17 18 19 | mp3an23 | ⊢ ( ( ( exp ‘ ( i · 𝐴 ) ) − ( exp ‘ ( - i · 𝐴 ) ) ) ∈ ℂ → - ( ( ( exp ‘ ( i · 𝐴 ) ) − ( exp ‘ ( - i · 𝐴 ) ) ) / ( 2 · i ) ) = ( - ( ( exp ‘ ( i · 𝐴 ) ) − ( exp ‘ ( - i · 𝐴 ) ) ) / ( 2 · i ) ) ) |
| 21 | 16 20 | syl | ⊢ ( 𝐴 ∈ ℂ → - ( ( ( exp ‘ ( i · 𝐴 ) ) − ( exp ‘ ( - i · 𝐴 ) ) ) / ( 2 · i ) ) = ( - ( ( exp ‘ ( i · 𝐴 ) ) − ( exp ‘ ( - i · 𝐴 ) ) ) / ( 2 · i ) ) ) |
| 22 | 5 21 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → - ( sin ‘ 𝐴 ) = ( - ( ( exp ‘ ( i · 𝐴 ) ) − ( exp ‘ ( - i · 𝐴 ) ) ) / ( 2 · i ) ) ) |
| 23 | mulneg12 | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( - i · 𝐴 ) = ( i · - 𝐴 ) ) | |
| 24 | 6 23 | mpan | ⊢ ( 𝐴 ∈ ℂ → ( - i · 𝐴 ) = ( i · - 𝐴 ) ) |
| 25 | 24 | eqcomd | ⊢ ( 𝐴 ∈ ℂ → ( i · - 𝐴 ) = ( - i · 𝐴 ) ) |
| 26 | 25 | fveq2d | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · - 𝐴 ) ) = ( exp ‘ ( - i · 𝐴 ) ) ) |
| 27 | mul2neg | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( - i · - 𝐴 ) = ( i · 𝐴 ) ) | |
| 28 | 6 27 | mpan | ⊢ ( 𝐴 ∈ ℂ → ( - i · - 𝐴 ) = ( i · 𝐴 ) ) |
| 29 | 28 | fveq2d | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( - i · - 𝐴 ) ) = ( exp ‘ ( i · 𝐴 ) ) ) |
| 30 | 26 29 | oveq12d | ⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ ( i · - 𝐴 ) ) − ( exp ‘ ( - i · - 𝐴 ) ) ) = ( ( exp ‘ ( - i · 𝐴 ) ) − ( exp ‘ ( i · 𝐴 ) ) ) ) |
| 31 | 10 15 | negsubdi2d | ⊢ ( 𝐴 ∈ ℂ → - ( ( exp ‘ ( i · 𝐴 ) ) − ( exp ‘ ( - i · 𝐴 ) ) ) = ( ( exp ‘ ( - i · 𝐴 ) ) − ( exp ‘ ( i · 𝐴 ) ) ) ) |
| 32 | 30 31 | eqtr4d | ⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ ( i · - 𝐴 ) ) − ( exp ‘ ( - i · - 𝐴 ) ) ) = - ( ( exp ‘ ( i · 𝐴 ) ) − ( exp ‘ ( - i · 𝐴 ) ) ) ) |
| 33 | 32 | oveq1d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( exp ‘ ( i · - 𝐴 ) ) − ( exp ‘ ( - i · - 𝐴 ) ) ) / ( 2 · i ) ) = ( - ( ( exp ‘ ( i · 𝐴 ) ) − ( exp ‘ ( - i · 𝐴 ) ) ) / ( 2 · i ) ) ) |
| 34 | 22 33 | eqtr4d | ⊢ ( 𝐴 ∈ ℂ → - ( sin ‘ 𝐴 ) = ( ( ( exp ‘ ( i · - 𝐴 ) ) − ( exp ‘ ( - i · - 𝐴 ) ) ) / ( 2 · i ) ) ) |
| 35 | 3 34 | eqtr4d | ⊢ ( 𝐴 ∈ ℂ → ( sin ‘ - 𝐴 ) = - ( sin ‘ 𝐴 ) ) |