This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Write out the property A e. ran log explicitly. (Contributed by Mario Carneiro, 1-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ellogrn | ⊢ ( 𝐴 ∈ ran log ↔ ( 𝐴 ∈ ℂ ∧ - π < ( ℑ ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) ≤ π ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imf | ⊢ ℑ : ℂ ⟶ ℝ | |
| 2 | ffn | ⊢ ( ℑ : ℂ ⟶ ℝ → ℑ Fn ℂ ) | |
| 3 | elpreima | ⊢ ( ℑ Fn ℂ → ( 𝐴 ∈ ( ◡ ℑ “ ( - π (,] π ) ) ↔ ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ∈ ( - π (,] π ) ) ) ) | |
| 4 | 1 2 3 | mp2b | ⊢ ( 𝐴 ∈ ( ◡ ℑ “ ( - π (,] π ) ) ↔ ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ∈ ( - π (,] π ) ) ) |
| 5 | pire | ⊢ π ∈ ℝ | |
| 6 | 5 | renegcli | ⊢ - π ∈ ℝ |
| 7 | 6 | rexri | ⊢ - π ∈ ℝ* |
| 8 | elioc2 | ⊢ ( ( - π ∈ ℝ* ∧ π ∈ ℝ ) → ( ( ℑ ‘ 𝐴 ) ∈ ( - π (,] π ) ↔ ( ( ℑ ‘ 𝐴 ) ∈ ℝ ∧ - π < ( ℑ ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) ≤ π ) ) ) | |
| 9 | 7 5 8 | mp2an | ⊢ ( ( ℑ ‘ 𝐴 ) ∈ ( - π (,] π ) ↔ ( ( ℑ ‘ 𝐴 ) ∈ ℝ ∧ - π < ( ℑ ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) ≤ π ) ) |
| 10 | 3anass | ⊢ ( ( ( ℑ ‘ 𝐴 ) ∈ ℝ ∧ - π < ( ℑ ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) ≤ π ) ↔ ( ( ℑ ‘ 𝐴 ) ∈ ℝ ∧ ( - π < ( ℑ ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) ≤ π ) ) ) | |
| 11 | 9 10 | bitri | ⊢ ( ( ℑ ‘ 𝐴 ) ∈ ( - π (,] π ) ↔ ( ( ℑ ‘ 𝐴 ) ∈ ℝ ∧ ( - π < ( ℑ ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) ≤ π ) ) ) |
| 12 | imcl | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℝ ) | |
| 13 | 12 | biantrurd | ⊢ ( 𝐴 ∈ ℂ → ( ( - π < ( ℑ ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) ≤ π ) ↔ ( ( ℑ ‘ 𝐴 ) ∈ ℝ ∧ ( - π < ( ℑ ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) ≤ π ) ) ) ) |
| 14 | 11 13 | bitr4id | ⊢ ( 𝐴 ∈ ℂ → ( ( ℑ ‘ 𝐴 ) ∈ ( - π (,] π ) ↔ ( - π < ( ℑ ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) ≤ π ) ) ) |
| 15 | 14 | pm5.32i | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ∈ ( - π (,] π ) ) ↔ ( 𝐴 ∈ ℂ ∧ ( - π < ( ℑ ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) ≤ π ) ) ) |
| 16 | 4 15 | bitri | ⊢ ( 𝐴 ∈ ( ◡ ℑ “ ( - π (,] π ) ) ↔ ( 𝐴 ∈ ℂ ∧ ( - π < ( ℑ ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) ≤ π ) ) ) |
| 17 | logrn | ⊢ ran log = ( ◡ ℑ “ ( - π (,] π ) ) | |
| 18 | 17 | eleq2i | ⊢ ( 𝐴 ∈ ran log ↔ 𝐴 ∈ ( ◡ ℑ “ ( - π (,] π ) ) ) |
| 19 | 3anass | ⊢ ( ( 𝐴 ∈ ℂ ∧ - π < ( ℑ ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) ≤ π ) ↔ ( 𝐴 ∈ ℂ ∧ ( - π < ( ℑ ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) ≤ π ) ) ) | |
| 20 | 16 18 19 | 3bitr4i | ⊢ ( 𝐴 ∈ ran log ↔ ( 𝐴 ∈ ℂ ∧ - π < ( ℑ ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) ≤ π ) ) |