This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Move negative sign inside of a division. (Contributed by NM, 17-Sep-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divneg | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → - ( 𝐴 / 𝐵 ) = ( - 𝐴 / 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reccl | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 1 / 𝐵 ) ∈ ℂ ) | |
| 2 | mulneg1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 / 𝐵 ) ∈ ℂ ) → ( - 𝐴 · ( 1 / 𝐵 ) ) = - ( 𝐴 · ( 1 / 𝐵 ) ) ) | |
| 3 | 1 2 | sylan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( - 𝐴 · ( 1 / 𝐵 ) ) = - ( 𝐴 · ( 1 / 𝐵 ) ) ) |
| 4 | 3 | 3impb | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( - 𝐴 · ( 1 / 𝐵 ) ) = - ( 𝐴 · ( 1 / 𝐵 ) ) ) |
| 5 | negcl | ⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) | |
| 6 | divrec | ⊢ ( ( - 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( - 𝐴 / 𝐵 ) = ( - 𝐴 · ( 1 / 𝐵 ) ) ) | |
| 7 | 5 6 | syl3an1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( - 𝐴 / 𝐵 ) = ( - 𝐴 · ( 1 / 𝐵 ) ) ) |
| 8 | divrec | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) = ( 𝐴 · ( 1 / 𝐵 ) ) ) | |
| 9 | 8 | negeqd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → - ( 𝐴 / 𝐵 ) = - ( 𝐴 · ( 1 / 𝐵 ) ) ) |
| 10 | 4 7 9 | 3eqtr4rd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → - ( 𝐴 / 𝐵 ) = ( - 𝐴 / 𝐵 ) ) |