This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The tangent function has range contained in the domain of the arctangent. (Contributed by Mario Carneiro, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | atandmtan | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( tan ‘ 𝐴 ) ∈ dom arctan ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( tan ‘ 𝐴 ) ∈ ℂ ) | |
| 2 | tanval | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( tan ‘ 𝐴 ) = ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) | |
| 3 | 2 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( ( tan ‘ 𝐴 ) ↑ 2 ) = ( ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ↑ 2 ) ) |
| 4 | sincl | ⊢ ( 𝐴 ∈ ℂ → ( sin ‘ 𝐴 ) ∈ ℂ ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( sin ‘ 𝐴 ) ∈ ℂ ) |
| 6 | coscl | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ 𝐴 ) ∈ ℂ ) | |
| 7 | 6 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( cos ‘ 𝐴 ) ∈ ℂ ) |
| 8 | simpr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( cos ‘ 𝐴 ) ≠ 0 ) | |
| 9 | 5 7 8 | sqdivd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ↑ 2 ) = ( ( ( sin ‘ 𝐴 ) ↑ 2 ) / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) |
| 10 | 3 9 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( ( tan ‘ 𝐴 ) ↑ 2 ) = ( ( ( sin ‘ 𝐴 ) ↑ 2 ) / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) |
| 11 | 5 | sqcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( ( sin ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ) |
| 12 | 7 | sqcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( ( cos ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ) |
| 13 | 12 | negcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → - ( ( cos ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ) |
| 14 | 11 12 | subnegd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( ( ( sin ‘ 𝐴 ) ↑ 2 ) − - ( ( cos ‘ 𝐴 ) ↑ 2 ) ) = ( ( ( sin ‘ 𝐴 ) ↑ 2 ) + ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) |
| 15 | sincossq | ⊢ ( 𝐴 ∈ ℂ → ( ( ( sin ‘ 𝐴 ) ↑ 2 ) + ( ( cos ‘ 𝐴 ) ↑ 2 ) ) = 1 ) | |
| 16 | 15 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( ( ( sin ‘ 𝐴 ) ↑ 2 ) + ( ( cos ‘ 𝐴 ) ↑ 2 ) ) = 1 ) |
| 17 | 14 16 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( ( ( sin ‘ 𝐴 ) ↑ 2 ) − - ( ( cos ‘ 𝐴 ) ↑ 2 ) ) = 1 ) |
| 18 | ax-1ne0 | ⊢ 1 ≠ 0 | |
| 19 | 18 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → 1 ≠ 0 ) |
| 20 | 17 19 | eqnetrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( ( ( sin ‘ 𝐴 ) ↑ 2 ) − - ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ≠ 0 ) |
| 21 | 11 13 20 | subne0ad | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( ( sin ‘ 𝐴 ) ↑ 2 ) ≠ - ( ( cos ‘ 𝐴 ) ↑ 2 ) ) |
| 22 | 12 | mulm1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( - 1 · ( ( cos ‘ 𝐴 ) ↑ 2 ) ) = - ( ( cos ‘ 𝐴 ) ↑ 2 ) ) |
| 23 | 21 22 | neeqtrrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( ( sin ‘ 𝐴 ) ↑ 2 ) ≠ ( - 1 · ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) |
| 24 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 25 | 24 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → - 1 ∈ ℂ ) |
| 26 | sqne0 | ⊢ ( ( cos ‘ 𝐴 ) ∈ ℂ → ( ( ( cos ‘ 𝐴 ) ↑ 2 ) ≠ 0 ↔ ( cos ‘ 𝐴 ) ≠ 0 ) ) | |
| 27 | 6 26 | syl | ⊢ ( 𝐴 ∈ ℂ → ( ( ( cos ‘ 𝐴 ) ↑ 2 ) ≠ 0 ↔ ( cos ‘ 𝐴 ) ≠ 0 ) ) |
| 28 | 27 | biimpar | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( ( cos ‘ 𝐴 ) ↑ 2 ) ≠ 0 ) |
| 29 | 11 25 12 28 | divmul3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( ( ( ( sin ‘ 𝐴 ) ↑ 2 ) / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) = - 1 ↔ ( ( sin ‘ 𝐴 ) ↑ 2 ) = ( - 1 · ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) ) |
| 30 | 29 | necon3bid | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( ( ( ( sin ‘ 𝐴 ) ↑ 2 ) / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ≠ - 1 ↔ ( ( sin ‘ 𝐴 ) ↑ 2 ) ≠ ( - 1 · ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) ) |
| 31 | 23 30 | mpbird | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( ( ( sin ‘ 𝐴 ) ↑ 2 ) / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ≠ - 1 ) |
| 32 | 10 31 | eqnetrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( ( tan ‘ 𝐴 ) ↑ 2 ) ≠ - 1 ) |
| 33 | atandm3 | ⊢ ( ( tan ‘ 𝐴 ) ∈ dom arctan ↔ ( ( tan ‘ 𝐴 ) ∈ ℂ ∧ ( ( tan ‘ 𝐴 ) ↑ 2 ) ≠ - 1 ) ) | |
| 34 | 1 32 33 | sylanbrc | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( tan ‘ 𝐴 ) ∈ dom arctan ) |