This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The tangent of a negative is the negative of the tangent. (Contributed by David A. Wheeler, 23-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tanneg | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( tan ‘ - 𝐴 ) = - ( tan ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coscl | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ 𝐴 ) ∈ ℂ ) | |
| 2 | sincl | ⊢ ( 𝐴 ∈ ℂ → ( sin ‘ 𝐴 ) ∈ ℂ ) | |
| 3 | divneg | ⊢ ( ( ( sin ‘ 𝐴 ) ∈ ℂ ∧ ( cos ‘ 𝐴 ) ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → - ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) = ( - ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) | |
| 4 | 2 3 | syl3an1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → - ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) = ( - ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) |
| 5 | 1 4 | syl3an2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → - ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) = ( - ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) |
| 6 | 5 | 3anidm12 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → - ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) = ( - ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) |
| 7 | tanval | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( tan ‘ 𝐴 ) = ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) | |
| 8 | 7 | negeqd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → - ( tan ‘ 𝐴 ) = - ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) |
| 9 | negcl | ⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) | |
| 10 | cosneg | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ - 𝐴 ) = ( cos ‘ 𝐴 ) ) | |
| 11 | 10 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( cos ‘ - 𝐴 ) = ( cos ‘ 𝐴 ) ) |
| 12 | simpr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( cos ‘ 𝐴 ) ≠ 0 ) | |
| 13 | 11 12 | eqnetrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( cos ‘ - 𝐴 ) ≠ 0 ) |
| 14 | tanval | ⊢ ( ( - 𝐴 ∈ ℂ ∧ ( cos ‘ - 𝐴 ) ≠ 0 ) → ( tan ‘ - 𝐴 ) = ( ( sin ‘ - 𝐴 ) / ( cos ‘ - 𝐴 ) ) ) | |
| 15 | 9 13 14 | syl2an2r | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( tan ‘ - 𝐴 ) = ( ( sin ‘ - 𝐴 ) / ( cos ‘ - 𝐴 ) ) ) |
| 16 | sinneg | ⊢ ( 𝐴 ∈ ℂ → ( sin ‘ - 𝐴 ) = - ( sin ‘ 𝐴 ) ) | |
| 17 | 16 10 | oveq12d | ⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ - 𝐴 ) / ( cos ‘ - 𝐴 ) ) = ( - ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) |
| 18 | 17 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( ( sin ‘ - 𝐴 ) / ( cos ‘ - 𝐴 ) ) = ( - ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) |
| 19 | 15 18 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( tan ‘ - 𝐴 ) = ( - ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) |
| 20 | 6 8 19 | 3eqtr4rd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( tan ‘ - 𝐴 ) = - ( tan ‘ 𝐴 ) ) |