This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The real part of a complex number in terms of the imaginary part function. (Contributed by Mario Carneiro, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reim | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) = ( ℑ ‘ ( i · 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn | ⊢ i ∈ ℂ | |
| 2 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) | |
| 3 | 1 2 | mpan | ⊢ ( 𝐴 ∈ ℂ → ( i · 𝐴 ) ∈ ℂ ) |
| 4 | imval | ⊢ ( ( i · 𝐴 ) ∈ ℂ → ( ℑ ‘ ( i · 𝐴 ) ) = ( ℜ ‘ ( ( i · 𝐴 ) / i ) ) ) | |
| 5 | 3 4 | syl | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ ( i · 𝐴 ) ) = ( ℜ ‘ ( ( i · 𝐴 ) / i ) ) ) |
| 6 | ine0 | ⊢ i ≠ 0 | |
| 7 | divcan3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0 ) → ( ( i · 𝐴 ) / i ) = 𝐴 ) | |
| 8 | 1 6 7 | mp3an23 | ⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) / i ) = 𝐴 ) |
| 9 | 8 | fveq2d | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ ( ( i · 𝐴 ) / i ) ) = ( ℜ ‘ 𝐴 ) ) |
| 10 | 5 9 | eqtr2d | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) = ( ℑ ‘ ( i · 𝐴 ) ) ) |