This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Evaluation of a univariate subring polynomial as a function in a power series. (Contributed by Thierry Arnoux, 23-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ressply1evl2.q | |- Q = ( S evalSub1 R ) |
|
| ressply1evl2.k | |- K = ( Base ` S ) |
||
| ressply1evl2.w | |- W = ( Poly1 ` U ) |
||
| ressply1evl2.u | |- U = ( S |`s R ) |
||
| ressply1evl2.b | |- B = ( Base ` W ) |
||
| evls1fpws.s | |- ( ph -> S e. CRing ) |
||
| evls1fpws.r | |- ( ph -> R e. ( SubRing ` S ) ) |
||
| evls1fpws.y | |- ( ph -> M e. B ) |
||
| evls1fpws.1 | |- .x. = ( .r ` S ) |
||
| evls1fpws.2 | |- .^ = ( .g ` ( mulGrp ` S ) ) |
||
| evls1fpws.a | |- A = ( coe1 ` M ) |
||
| Assertion | evls1fpws | |- ( ph -> ( Q ` M ) = ( x e. K |-> ( S gsum ( k e. NN0 |-> ( ( A ` k ) .x. ( k .^ x ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressply1evl2.q | |- Q = ( S evalSub1 R ) |
|
| 2 | ressply1evl2.k | |- K = ( Base ` S ) |
|
| 3 | ressply1evl2.w | |- W = ( Poly1 ` U ) |
|
| 4 | ressply1evl2.u | |- U = ( S |`s R ) |
|
| 5 | ressply1evl2.b | |- B = ( Base ` W ) |
|
| 6 | evls1fpws.s | |- ( ph -> S e. CRing ) |
|
| 7 | evls1fpws.r | |- ( ph -> R e. ( SubRing ` S ) ) |
|
| 8 | evls1fpws.y | |- ( ph -> M e. B ) |
|
| 9 | evls1fpws.1 | |- .x. = ( .r ` S ) |
|
| 10 | evls1fpws.2 | |- .^ = ( .g ` ( mulGrp ` S ) ) |
|
| 11 | evls1fpws.a | |- A = ( coe1 ` M ) |
|
| 12 | 4 | subrgring | |- ( R e. ( SubRing ` S ) -> U e. Ring ) |
| 13 | 7 12 | syl | |- ( ph -> U e. Ring ) |
| 14 | eqid | |- ( var1 ` U ) = ( var1 ` U ) |
|
| 15 | eqid | |- ( .s ` W ) = ( .s ` W ) |
|
| 16 | eqid | |- ( mulGrp ` W ) = ( mulGrp ` W ) |
|
| 17 | eqid | |- ( .g ` ( mulGrp ` W ) ) = ( .g ` ( mulGrp ` W ) ) |
|
| 18 | 3 14 5 15 16 17 11 | ply1coe | |- ( ( U e. Ring /\ M e. B ) -> M = ( W gsum ( k e. NN0 |-> ( ( A ` k ) ( .s ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) ) ) |
| 19 | 13 8 18 | syl2anc | |- ( ph -> M = ( W gsum ( k e. NN0 |-> ( ( A ` k ) ( .s ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) ) ) |
| 20 | 19 | fveq2d | |- ( ph -> ( Q ` M ) = ( Q ` ( W gsum ( k e. NN0 |-> ( ( A ` k ) ( .s ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) ) ) ) |
| 21 | eqid | |- ( 0g ` W ) = ( 0g ` W ) |
|
| 22 | eqid | |- ( S ^s K ) = ( S ^s K ) |
|
| 23 | 3 | ply1lmod | |- ( U e. Ring -> W e. LMod ) |
| 24 | 13 23 | syl | |- ( ph -> W e. LMod ) |
| 25 | 24 | adantr | |- ( ( ph /\ k e. NN0 ) -> W e. LMod ) |
| 26 | eqid | |- ( Base ` U ) = ( Base ` U ) |
|
| 27 | 11 5 3 26 | coe1fvalcl | |- ( ( M e. B /\ k e. NN0 ) -> ( A ` k ) e. ( Base ` U ) ) |
| 28 | 8 27 | sylan | |- ( ( ph /\ k e. NN0 ) -> ( A ` k ) e. ( Base ` U ) ) |
| 29 | 3 | ply1sca | |- ( U e. Ring -> U = ( Scalar ` W ) ) |
| 30 | 13 29 | syl | |- ( ph -> U = ( Scalar ` W ) ) |
| 31 | 30 | fveq2d | |- ( ph -> ( Base ` U ) = ( Base ` ( Scalar ` W ) ) ) |
| 32 | 31 | adantr | |- ( ( ph /\ k e. NN0 ) -> ( Base ` U ) = ( Base ` ( Scalar ` W ) ) ) |
| 33 | 28 32 | eleqtrd | |- ( ( ph /\ k e. NN0 ) -> ( A ` k ) e. ( Base ` ( Scalar ` W ) ) ) |
| 34 | 16 5 | mgpbas | |- B = ( Base ` ( mulGrp ` W ) ) |
| 35 | 3 | ply1ring | |- ( U e. Ring -> W e. Ring ) |
| 36 | 13 35 | syl | |- ( ph -> W e. Ring ) |
| 37 | 36 | adantr | |- ( ( ph /\ k e. NN0 ) -> W e. Ring ) |
| 38 | 16 | ringmgp | |- ( W e. Ring -> ( mulGrp ` W ) e. Mnd ) |
| 39 | 37 38 | syl | |- ( ( ph /\ k e. NN0 ) -> ( mulGrp ` W ) e. Mnd ) |
| 40 | simpr | |- ( ( ph /\ k e. NN0 ) -> k e. NN0 ) |
|
| 41 | 13 | adantr | |- ( ( ph /\ k e. NN0 ) -> U e. Ring ) |
| 42 | 14 3 5 | vr1cl | |- ( U e. Ring -> ( var1 ` U ) e. B ) |
| 43 | 41 42 | syl | |- ( ( ph /\ k e. NN0 ) -> ( var1 ` U ) e. B ) |
| 44 | 34 17 39 40 43 | mulgnn0cld | |- ( ( ph /\ k e. NN0 ) -> ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) e. B ) |
| 45 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 46 | eqid | |- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
|
| 47 | 5 45 15 46 | lmodvscl | |- ( ( W e. LMod /\ ( A ` k ) e. ( Base ` ( Scalar ` W ) ) /\ ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) e. B ) -> ( ( A ` k ) ( .s ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) e. B ) |
| 48 | 25 33 44 47 | syl3anc | |- ( ( ph /\ k e. NN0 ) -> ( ( A ` k ) ( .s ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) e. B ) |
| 49 | ssidd | |- ( ph -> NN0 C_ NN0 ) |
|
| 50 | fvexd | |- ( ph -> ( 0g ` W ) e. _V ) |
|
| 51 | fveq2 | |- ( k = j -> ( A ` k ) = ( A ` j ) ) |
|
| 52 | oveq1 | |- ( k = j -> ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) = ( j ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) |
|
| 53 | 51 52 | oveq12d | |- ( k = j -> ( ( A ` k ) ( .s ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) = ( ( A ` j ) ( .s ` W ) ( j ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) |
| 54 | eqid | |- ( 0g ` U ) = ( 0g ` U ) |
|
| 55 | 11 5 3 54 | coe1ae0 | |- ( M e. B -> E. i e. NN0 A. j e. NN0 ( i < j -> ( A ` j ) = ( 0g ` U ) ) ) |
| 56 | 8 55 | syl | |- ( ph -> E. i e. NN0 A. j e. NN0 ( i < j -> ( A ` j ) = ( 0g ` U ) ) ) |
| 57 | simpr | |- ( ( ( ( ph /\ i e. NN0 ) /\ j e. NN0 ) /\ ( A ` j ) = ( 0g ` U ) ) -> ( A ` j ) = ( 0g ` U ) ) |
|
| 58 | 30 | ad3antrrr | |- ( ( ( ( ph /\ i e. NN0 ) /\ j e. NN0 ) /\ ( A ` j ) = ( 0g ` U ) ) -> U = ( Scalar ` W ) ) |
| 59 | 58 | fveq2d | |- ( ( ( ( ph /\ i e. NN0 ) /\ j e. NN0 ) /\ ( A ` j ) = ( 0g ` U ) ) -> ( 0g ` U ) = ( 0g ` ( Scalar ` W ) ) ) |
| 60 | 57 59 | eqtrd | |- ( ( ( ( ph /\ i e. NN0 ) /\ j e. NN0 ) /\ ( A ` j ) = ( 0g ` U ) ) -> ( A ` j ) = ( 0g ` ( Scalar ` W ) ) ) |
| 61 | 60 | oveq1d | |- ( ( ( ( ph /\ i e. NN0 ) /\ j e. NN0 ) /\ ( A ` j ) = ( 0g ` U ) ) -> ( ( A ` j ) ( .s ` W ) ( j ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) = ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) ( j ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) |
| 62 | 24 | ad3antrrr | |- ( ( ( ( ph /\ i e. NN0 ) /\ j e. NN0 ) /\ ( A ` j ) = ( 0g ` U ) ) -> W e. LMod ) |
| 63 | 36 38 | syl | |- ( ph -> ( mulGrp ` W ) e. Mnd ) |
| 64 | 63 | adantr | |- ( ( ph /\ j e. NN0 ) -> ( mulGrp ` W ) e. Mnd ) |
| 65 | simpr | |- ( ( ph /\ j e. NN0 ) -> j e. NN0 ) |
|
| 66 | 13 42 | syl | |- ( ph -> ( var1 ` U ) e. B ) |
| 67 | 66 | adantr | |- ( ( ph /\ j e. NN0 ) -> ( var1 ` U ) e. B ) |
| 68 | 34 17 64 65 67 | mulgnn0cld | |- ( ( ph /\ j e. NN0 ) -> ( j ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) e. B ) |
| 69 | 68 | ad4ant13 | |- ( ( ( ( ph /\ i e. NN0 ) /\ j e. NN0 ) /\ ( A ` j ) = ( 0g ` U ) ) -> ( j ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) e. B ) |
| 70 | eqid | |- ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) |
|
| 71 | 5 45 15 70 21 | lmod0vs | |- ( ( W e. LMod /\ ( j ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) e. B ) -> ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) ( j ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) = ( 0g ` W ) ) |
| 72 | 62 69 71 | syl2anc | |- ( ( ( ( ph /\ i e. NN0 ) /\ j e. NN0 ) /\ ( A ` j ) = ( 0g ` U ) ) -> ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) ( j ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) = ( 0g ` W ) ) |
| 73 | 61 72 | eqtrd | |- ( ( ( ( ph /\ i e. NN0 ) /\ j e. NN0 ) /\ ( A ` j ) = ( 0g ` U ) ) -> ( ( A ` j ) ( .s ` W ) ( j ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) = ( 0g ` W ) ) |
| 74 | 73 | ex | |- ( ( ( ph /\ i e. NN0 ) /\ j e. NN0 ) -> ( ( A ` j ) = ( 0g ` U ) -> ( ( A ` j ) ( .s ` W ) ( j ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) = ( 0g ` W ) ) ) |
| 75 | 74 | imim2d | |- ( ( ( ph /\ i e. NN0 ) /\ j e. NN0 ) -> ( ( i < j -> ( A ` j ) = ( 0g ` U ) ) -> ( i < j -> ( ( A ` j ) ( .s ` W ) ( j ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) = ( 0g ` W ) ) ) ) |
| 76 | 75 | ralimdva | |- ( ( ph /\ i e. NN0 ) -> ( A. j e. NN0 ( i < j -> ( A ` j ) = ( 0g ` U ) ) -> A. j e. NN0 ( i < j -> ( ( A ` j ) ( .s ` W ) ( j ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) = ( 0g ` W ) ) ) ) |
| 77 | 76 | reximdva | |- ( ph -> ( E. i e. NN0 A. j e. NN0 ( i < j -> ( A ` j ) = ( 0g ` U ) ) -> E. i e. NN0 A. j e. NN0 ( i < j -> ( ( A ` j ) ( .s ` W ) ( j ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) = ( 0g ` W ) ) ) ) |
| 78 | 56 77 | mpd | |- ( ph -> E. i e. NN0 A. j e. NN0 ( i < j -> ( ( A ` j ) ( .s ` W ) ( j ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) = ( 0g ` W ) ) ) |
| 79 | 50 48 53 78 | mptnn0fsuppd | |- ( ph -> ( k e. NN0 |-> ( ( A ` k ) ( .s ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) finSupp ( 0g ` W ) ) |
| 80 | 1 2 3 21 4 22 5 6 7 48 49 79 | evls1gsumadd | |- ( ph -> ( Q ` ( W gsum ( k e. NN0 |-> ( ( A ` k ) ( .s ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) ) ) = ( ( S ^s K ) gsum ( k e. NN0 |-> ( Q ` ( ( A ` k ) ( .s ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) ) ) ) |
| 81 | 1 2 22 4 3 | evls1rhm | |- ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> Q e. ( W RingHom ( S ^s K ) ) ) |
| 82 | 6 7 81 | syl2anc | |- ( ph -> Q e. ( W RingHom ( S ^s K ) ) ) |
| 83 | 82 | adantr | |- ( ( ph /\ k e. NN0 ) -> Q e. ( W RingHom ( S ^s K ) ) ) |
| 84 | eqid | |- ( algSc ` W ) = ( algSc ` W ) |
|
| 85 | 84 45 36 24 46 5 | asclf | |- ( ph -> ( algSc ` W ) : ( Base ` ( Scalar ` W ) ) --> B ) |
| 86 | 85 | adantr | |- ( ( ph /\ k e. NN0 ) -> ( algSc ` W ) : ( Base ` ( Scalar ` W ) ) --> B ) |
| 87 | 86 33 | ffvelcdmd | |- ( ( ph /\ k e. NN0 ) -> ( ( algSc ` W ) ` ( A ` k ) ) e. B ) |
| 88 | eqid | |- ( .r ` W ) = ( .r ` W ) |
|
| 89 | eqid | |- ( .r ` ( S ^s K ) ) = ( .r ` ( S ^s K ) ) |
|
| 90 | 5 88 89 | rhmmul | |- ( ( Q e. ( W RingHom ( S ^s K ) ) /\ ( ( algSc ` W ) ` ( A ` k ) ) e. B /\ ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) e. B ) -> ( Q ` ( ( ( algSc ` W ) ` ( A ` k ) ) ( .r ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) = ( ( Q ` ( ( algSc ` W ) ` ( A ` k ) ) ) ( .r ` ( S ^s K ) ) ( Q ` ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) ) |
| 91 | 83 87 44 90 | syl3anc | |- ( ( ph /\ k e. NN0 ) -> ( Q ` ( ( ( algSc ` W ) ` ( A ` k ) ) ( .r ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) = ( ( Q ` ( ( algSc ` W ) ` ( A ` k ) ) ) ( .r ` ( S ^s K ) ) ( Q ` ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) ) |
| 92 | 4 | subrgcrng | |- ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> U e. CRing ) |
| 93 | 6 7 92 | syl2anc | |- ( ph -> U e. CRing ) |
| 94 | 3 | ply1assa | |- ( U e. CRing -> W e. AssAlg ) |
| 95 | 93 94 | syl | |- ( ph -> W e. AssAlg ) |
| 96 | 95 | adantr | |- ( ( ph /\ k e. NN0 ) -> W e. AssAlg ) |
| 97 | 84 45 46 5 88 15 | asclmul1 | |- ( ( W e. AssAlg /\ ( A ` k ) e. ( Base ` ( Scalar ` W ) ) /\ ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) e. B ) -> ( ( ( algSc ` W ) ` ( A ` k ) ) ( .r ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) = ( ( A ` k ) ( .s ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) |
| 98 | 96 33 44 97 | syl3anc | |- ( ( ph /\ k e. NN0 ) -> ( ( ( algSc ` W ) ` ( A ` k ) ) ( .r ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) = ( ( A ` k ) ( .s ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) |
| 99 | 98 | fveq2d | |- ( ( ph /\ k e. NN0 ) -> ( Q ` ( ( ( algSc ` W ) ` ( A ` k ) ) ( .r ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) = ( Q ` ( ( A ` k ) ( .s ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) ) |
| 100 | eqid | |- ( Base ` ( S ^s K ) ) = ( Base ` ( S ^s K ) ) |
|
| 101 | 6 | adantr | |- ( ( ph /\ k e. NN0 ) -> S e. CRing ) |
| 102 | 2 | fvexi | |- K e. _V |
| 103 | 102 | a1i | |- ( ( ph /\ k e. NN0 ) -> K e. _V ) |
| 104 | 5 100 | rhmf | |- ( Q e. ( W RingHom ( S ^s K ) ) -> Q : B --> ( Base ` ( S ^s K ) ) ) |
| 105 | 83 104 | syl | |- ( ( ph /\ k e. NN0 ) -> Q : B --> ( Base ` ( S ^s K ) ) ) |
| 106 | 105 87 | ffvelcdmd | |- ( ( ph /\ k e. NN0 ) -> ( Q ` ( ( algSc ` W ) ` ( A ` k ) ) ) e. ( Base ` ( S ^s K ) ) ) |
| 107 | 105 44 | ffvelcdmd | |- ( ( ph /\ k e. NN0 ) -> ( Q ` ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) e. ( Base ` ( S ^s K ) ) ) |
| 108 | 22 100 101 103 106 107 9 89 | pwsmulrval | |- ( ( ph /\ k e. NN0 ) -> ( ( Q ` ( ( algSc ` W ) ` ( A ` k ) ) ) ( .r ` ( S ^s K ) ) ( Q ` ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) = ( ( Q ` ( ( algSc ` W ) ` ( A ` k ) ) ) oF .x. ( Q ` ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) ) |
| 109 | 22 2 100 101 103 106 | pwselbas | |- ( ( ph /\ k e. NN0 ) -> ( Q ` ( ( algSc ` W ) ` ( A ` k ) ) ) : K --> K ) |
| 110 | 109 | ffnd | |- ( ( ph /\ k e. NN0 ) -> ( Q ` ( ( algSc ` W ) ` ( A ` k ) ) ) Fn K ) |
| 111 | 22 2 100 101 103 107 | pwselbas | |- ( ( ph /\ k e. NN0 ) -> ( Q ` ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) : K --> K ) |
| 112 | 111 | ffnd | |- ( ( ph /\ k e. NN0 ) -> ( Q ` ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) Fn K ) |
| 113 | inidm | |- ( K i^i K ) = K |
|
| 114 | 6 | ad2antrr | |- ( ( ( ph /\ k e. NN0 ) /\ x e. K ) -> S e. CRing ) |
| 115 | 7 | ad2antrr | |- ( ( ( ph /\ k e. NN0 ) /\ x e. K ) -> R e. ( SubRing ` S ) ) |
| 116 | 2 | subrgss | |- ( R e. ( SubRing ` S ) -> R C_ K ) |
| 117 | 7 116 | syl | |- ( ph -> R C_ K ) |
| 118 | 4 2 | ressbas2 | |- ( R C_ K -> R = ( Base ` U ) ) |
| 119 | 117 118 | syl | |- ( ph -> R = ( Base ` U ) ) |
| 120 | 119 | adantr | |- ( ( ph /\ k e. NN0 ) -> R = ( Base ` U ) ) |
| 121 | 28 120 | eleqtrrd | |- ( ( ph /\ k e. NN0 ) -> ( A ` k ) e. R ) |
| 122 | 121 | adantr | |- ( ( ( ph /\ k e. NN0 ) /\ x e. K ) -> ( A ` k ) e. R ) |
| 123 | simpr | |- ( ( ( ph /\ k e. NN0 ) /\ x e. K ) -> x e. K ) |
|
| 124 | 1 3 4 2 84 114 115 122 123 | evls1scafv | |- ( ( ( ph /\ k e. NN0 ) /\ x e. K ) -> ( ( Q ` ( ( algSc ` W ) ` ( A ` k ) ) ) ` x ) = ( A ` k ) ) |
| 125 | simplr | |- ( ( ( ph /\ k e. NN0 ) /\ x e. K ) -> k e. NN0 ) |
|
| 126 | 1 4 3 14 2 17 10 114 115 125 123 | evls1varpwval | |- ( ( ( ph /\ k e. NN0 ) /\ x e. K ) -> ( ( Q ` ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ` x ) = ( k .^ x ) ) |
| 127 | 110 112 103 103 113 124 126 | offval | |- ( ( ph /\ k e. NN0 ) -> ( ( Q ` ( ( algSc ` W ) ` ( A ` k ) ) ) oF .x. ( Q ` ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) = ( x e. K |-> ( ( A ` k ) .x. ( k .^ x ) ) ) ) |
| 128 | 108 127 | eqtrd | |- ( ( ph /\ k e. NN0 ) -> ( ( Q ` ( ( algSc ` W ) ` ( A ` k ) ) ) ( .r ` ( S ^s K ) ) ( Q ` ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) = ( x e. K |-> ( ( A ` k ) .x. ( k .^ x ) ) ) ) |
| 129 | 91 99 128 | 3eqtr3d | |- ( ( ph /\ k e. NN0 ) -> ( Q ` ( ( A ` k ) ( .s ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) = ( x e. K |-> ( ( A ` k ) .x. ( k .^ x ) ) ) ) |
| 130 | 129 | mpteq2dva | |- ( ph -> ( k e. NN0 |-> ( Q ` ( ( A ` k ) ( .s ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) ) = ( k e. NN0 |-> ( x e. K |-> ( ( A ` k ) .x. ( k .^ x ) ) ) ) ) |
| 131 | 130 | oveq2d | |- ( ph -> ( ( S ^s K ) gsum ( k e. NN0 |-> ( Q ` ( ( A ` k ) ( .s ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) ) ) = ( ( S ^s K ) gsum ( k e. NN0 |-> ( x e. K |-> ( ( A ` k ) .x. ( k .^ x ) ) ) ) ) ) |
| 132 | eqid | |- ( 0g ` ( S ^s K ) ) = ( 0g ` ( S ^s K ) ) |
|
| 133 | 102 | a1i | |- ( ph -> K e. _V ) |
| 134 | nn0ex | |- NN0 e. _V |
|
| 135 | 134 | a1i | |- ( ph -> NN0 e. _V ) |
| 136 | 6 | crngringd | |- ( ph -> S e. Ring ) |
| 137 | 136 | ringcmnd | |- ( ph -> S e. CMnd ) |
| 138 | 136 | ad2antrr | |- ( ( ( ph /\ k e. NN0 ) /\ x e. K ) -> S e. Ring ) |
| 139 | 7 | adantr | |- ( ( ph /\ k e. NN0 ) -> R e. ( SubRing ` S ) ) |
| 140 | 139 116 | syl | |- ( ( ph /\ k e. NN0 ) -> R C_ K ) |
| 141 | 140 121 | sseldd | |- ( ( ph /\ k e. NN0 ) -> ( A ` k ) e. K ) |
| 142 | 141 | adantr | |- ( ( ( ph /\ k e. NN0 ) /\ x e. K ) -> ( A ` k ) e. K ) |
| 143 | eqid | |- ( mulGrp ` S ) = ( mulGrp ` S ) |
|
| 144 | 143 2 | mgpbas | |- K = ( Base ` ( mulGrp ` S ) ) |
| 145 | 143 | ringmgp | |- ( S e. Ring -> ( mulGrp ` S ) e. Mnd ) |
| 146 | 136 145 | syl | |- ( ph -> ( mulGrp ` S ) e. Mnd ) |
| 147 | 146 | ad2antrr | |- ( ( ( ph /\ k e. NN0 ) /\ x e. K ) -> ( mulGrp ` S ) e. Mnd ) |
| 148 | 144 10 147 125 123 | mulgnn0cld | |- ( ( ( ph /\ k e. NN0 ) /\ x e. K ) -> ( k .^ x ) e. K ) |
| 149 | 2 9 138 142 148 | ringcld | |- ( ( ( ph /\ k e. NN0 ) /\ x e. K ) -> ( ( A ` k ) .x. ( k .^ x ) ) e. K ) |
| 150 | 149 | 3impa | |- ( ( ph /\ k e. NN0 /\ x e. K ) -> ( ( A ` k ) .x. ( k .^ x ) ) e. K ) |
| 151 | 150 | 3com23 | |- ( ( ph /\ x e. K /\ k e. NN0 ) -> ( ( A ` k ) .x. ( k .^ x ) ) e. K ) |
| 152 | 151 | 3expb | |- ( ( ph /\ ( x e. K /\ k e. NN0 ) ) -> ( ( A ` k ) .x. ( k .^ x ) ) e. K ) |
| 153 | 135 | mptexd | |- ( ph -> ( k e. NN0 |-> ( x e. K |-> ( ( A ` k ) .x. ( k .^ x ) ) ) ) e. _V ) |
| 154 | funmpt | |- Fun ( k e. NN0 |-> ( x e. K |-> ( ( A ` k ) .x. ( k .^ x ) ) ) ) |
|
| 155 | 154 | a1i | |- ( ph -> Fun ( k e. NN0 |-> ( x e. K |-> ( ( A ` k ) .x. ( k .^ x ) ) ) ) ) |
| 156 | fvexd | |- ( ph -> ( 0g ` ( S ^s K ) ) e. _V ) |
|
| 157 | 11 5 3 54 | coe1sfi | |- ( M e. B -> A finSupp ( 0g ` U ) ) |
| 158 | 8 157 | syl | |- ( ph -> A finSupp ( 0g ` U ) ) |
| 159 | 158 | fsuppimpd | |- ( ph -> ( A supp ( 0g ` U ) ) e. Fin ) |
| 160 | 11 5 3 26 | coe1f | |- ( M e. B -> A : NN0 --> ( Base ` U ) ) |
| 161 | 8 160 | syl | |- ( ph -> A : NN0 --> ( Base ` U ) ) |
| 162 | 161 | ffnd | |- ( ph -> A Fn NN0 ) |
| 163 | 162 | adantr | |- ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) -> A Fn NN0 ) |
| 164 | 134 | a1i | |- ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) -> NN0 e. _V ) |
| 165 | fvexd | |- ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) -> ( 0g ` U ) e. _V ) |
|
| 166 | simpr | |- ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) -> k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) |
|
| 167 | 163 164 165 166 | fvdifsupp | |- ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) -> ( A ` k ) = ( 0g ` U ) ) |
| 168 | eqid | |- ( 0g ` S ) = ( 0g ` S ) |
|
| 169 | 4 168 | subrg0 | |- ( R e. ( SubRing ` S ) -> ( 0g ` S ) = ( 0g ` U ) ) |
| 170 | 7 169 | syl | |- ( ph -> ( 0g ` S ) = ( 0g ` U ) ) |
| 171 | 170 | adantr | |- ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) -> ( 0g ` S ) = ( 0g ` U ) ) |
| 172 | 167 171 | eqtr4d | |- ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) -> ( A ` k ) = ( 0g ` S ) ) |
| 173 | 172 | adantr | |- ( ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) /\ x e. K ) -> ( A ` k ) = ( 0g ` S ) ) |
| 174 | 173 | oveq1d | |- ( ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) /\ x e. K ) -> ( ( A ` k ) .x. ( k .^ x ) ) = ( ( 0g ` S ) .x. ( k .^ x ) ) ) |
| 175 | 136 | ad2antrr | |- ( ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) /\ x e. K ) -> S e. Ring ) |
| 176 | 175 145 | syl | |- ( ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) /\ x e. K ) -> ( mulGrp ` S ) e. Mnd ) |
| 177 | simplr | |- ( ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) /\ x e. K ) -> k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) |
|
| 178 | 177 | eldifad | |- ( ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) /\ x e. K ) -> k e. NN0 ) |
| 179 | simpr | |- ( ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) /\ x e. K ) -> x e. K ) |
|
| 180 | 144 10 176 178 179 | mulgnn0cld | |- ( ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) /\ x e. K ) -> ( k .^ x ) e. K ) |
| 181 | 2 9 168 | ringlz | |- ( ( S e. Ring /\ ( k .^ x ) e. K ) -> ( ( 0g ` S ) .x. ( k .^ x ) ) = ( 0g ` S ) ) |
| 182 | 175 180 181 | syl2anc | |- ( ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) /\ x e. K ) -> ( ( 0g ` S ) .x. ( k .^ x ) ) = ( 0g ` S ) ) |
| 183 | 174 182 | eqtrd | |- ( ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) /\ x e. K ) -> ( ( A ` k ) .x. ( k .^ x ) ) = ( 0g ` S ) ) |
| 184 | 183 | mpteq2dva | |- ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) -> ( x e. K |-> ( ( A ` k ) .x. ( k .^ x ) ) ) = ( x e. K |-> ( 0g ` S ) ) ) |
| 185 | fconstmpt | |- ( K X. { ( 0g ` S ) } ) = ( x e. K |-> ( 0g ` S ) ) |
|
| 186 | 184 185 | eqtr4di | |- ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) -> ( x e. K |-> ( ( A ` k ) .x. ( k .^ x ) ) ) = ( K X. { ( 0g ` S ) } ) ) |
| 187 | 137 | cmnmndd | |- ( ph -> S e. Mnd ) |
| 188 | 22 168 | pws0g | |- ( ( S e. Mnd /\ K e. _V ) -> ( K X. { ( 0g ` S ) } ) = ( 0g ` ( S ^s K ) ) ) |
| 189 | 187 133 188 | syl2anc | |- ( ph -> ( K X. { ( 0g ` S ) } ) = ( 0g ` ( S ^s K ) ) ) |
| 190 | 189 | adantr | |- ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) -> ( K X. { ( 0g ` S ) } ) = ( 0g ` ( S ^s K ) ) ) |
| 191 | 186 190 | eqtrd | |- ( ( ph /\ k e. ( NN0 \ ( A supp ( 0g ` U ) ) ) ) -> ( x e. K |-> ( ( A ` k ) .x. ( k .^ x ) ) ) = ( 0g ` ( S ^s K ) ) ) |
| 192 | 191 135 | suppss2 | |- ( ph -> ( ( k e. NN0 |-> ( x e. K |-> ( ( A ` k ) .x. ( k .^ x ) ) ) ) supp ( 0g ` ( S ^s K ) ) ) C_ ( A supp ( 0g ` U ) ) ) |
| 193 | suppssfifsupp | |- ( ( ( ( k e. NN0 |-> ( x e. K |-> ( ( A ` k ) .x. ( k .^ x ) ) ) ) e. _V /\ Fun ( k e. NN0 |-> ( x e. K |-> ( ( A ` k ) .x. ( k .^ x ) ) ) ) /\ ( 0g ` ( S ^s K ) ) e. _V ) /\ ( ( A supp ( 0g ` U ) ) e. Fin /\ ( ( k e. NN0 |-> ( x e. K |-> ( ( A ` k ) .x. ( k .^ x ) ) ) ) supp ( 0g ` ( S ^s K ) ) ) C_ ( A supp ( 0g ` U ) ) ) ) -> ( k e. NN0 |-> ( x e. K |-> ( ( A ` k ) .x. ( k .^ x ) ) ) ) finSupp ( 0g ` ( S ^s K ) ) ) |
|
| 194 | 153 155 156 159 192 193 | syl32anc | |- ( ph -> ( k e. NN0 |-> ( x e. K |-> ( ( A ` k ) .x. ( k .^ x ) ) ) ) finSupp ( 0g ` ( S ^s K ) ) ) |
| 195 | 22 2 132 133 135 137 152 194 | pwsgsum | |- ( ph -> ( ( S ^s K ) gsum ( k e. NN0 |-> ( x e. K |-> ( ( A ` k ) .x. ( k .^ x ) ) ) ) ) = ( x e. K |-> ( S gsum ( k e. NN0 |-> ( ( A ` k ) .x. ( k .^ x ) ) ) ) ) ) |
| 196 | 80 131 195 | 3eqtrd | |- ( ph -> ( Q ` ( W gsum ( k e. NN0 |-> ( ( A ` k ) ( .s ` W ) ( k ( .g ` ( mulGrp ` W ) ) ( var1 ` U ) ) ) ) ) ) = ( x e. K |-> ( S gsum ( k e. NN0 |-> ( ( A ` k ) .x. ( k .^ x ) ) ) ) ) ) |
| 197 | 20 196 | eqtrd | |- ( ph -> ( Q ` M ) = ( x e. K |-> ( S gsum ( k e. NN0 |-> ( ( A ` k ) .x. ( k .^ x ) ) ) ) ) ) |