This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The generator of a univariate polynomial algebra is contained in the base set. (Contributed by Stefan O'Rear, 19-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vr1cl.x | |- X = ( var1 ` R ) |
|
| vr1cl.p | |- P = ( Poly1 ` R ) |
||
| vr1cl.b | |- B = ( Base ` P ) |
||
| Assertion | vr1cl | |- ( R e. Ring -> X e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vr1cl.x | |- X = ( var1 ` R ) |
|
| 2 | vr1cl.p | |- P = ( Poly1 ` R ) |
|
| 3 | vr1cl.b | |- B = ( Base ` P ) |
|
| 4 | 1 | vr1val | |- X = ( ( 1o mVar R ) ` (/) ) |
| 5 | eqid | |- ( 1o mPoly R ) = ( 1o mPoly R ) |
|
| 6 | eqid | |- ( 1o mVar R ) = ( 1o mVar R ) |
|
| 7 | 2 3 | ply1bas | |- B = ( Base ` ( 1o mPoly R ) ) |
| 8 | 1onn | |- 1o e. _om |
|
| 9 | 8 | a1i | |- ( R e. Ring -> 1o e. _om ) |
| 10 | id | |- ( R e. Ring -> R e. Ring ) |
|
| 11 | 0lt1o | |- (/) e. 1o |
|
| 12 | 11 | a1i | |- ( R e. Ring -> (/) e. 1o ) |
| 13 | 5 6 7 9 10 12 | mvrcl | |- ( R e. Ring -> ( ( 1o mVar R ) ` (/) ) e. B ) |
| 14 | 4 13 | eqeltrid | |- ( R e. Ring -> X e. B ) |