This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Left multiplication by a lifted scalar is the same as the scalar operation. (Contributed by Mario Carneiro, 9-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | asclmul1.a | |- A = ( algSc ` W ) |
|
| asclmul1.f | |- F = ( Scalar ` W ) |
||
| asclmul1.k | |- K = ( Base ` F ) |
||
| asclmul1.v | |- V = ( Base ` W ) |
||
| asclmul1.t | |- .X. = ( .r ` W ) |
||
| asclmul1.s | |- .x. = ( .s ` W ) |
||
| Assertion | asclmul1 | |- ( ( W e. AssAlg /\ R e. K /\ X e. V ) -> ( ( A ` R ) .X. X ) = ( R .x. X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | asclmul1.a | |- A = ( algSc ` W ) |
|
| 2 | asclmul1.f | |- F = ( Scalar ` W ) |
|
| 3 | asclmul1.k | |- K = ( Base ` F ) |
|
| 4 | asclmul1.v | |- V = ( Base ` W ) |
|
| 5 | asclmul1.t | |- .X. = ( .r ` W ) |
|
| 6 | asclmul1.s | |- .x. = ( .s ` W ) |
|
| 7 | eqid | |- ( 1r ` W ) = ( 1r ` W ) |
|
| 8 | 1 2 3 6 7 | asclval | |- ( R e. K -> ( A ` R ) = ( R .x. ( 1r ` W ) ) ) |
| 9 | 8 | 3ad2ant2 | |- ( ( W e. AssAlg /\ R e. K /\ X e. V ) -> ( A ` R ) = ( R .x. ( 1r ` W ) ) ) |
| 10 | 9 | oveq1d | |- ( ( W e. AssAlg /\ R e. K /\ X e. V ) -> ( ( A ` R ) .X. X ) = ( ( R .x. ( 1r ` W ) ) .X. X ) ) |
| 11 | simp1 | |- ( ( W e. AssAlg /\ R e. K /\ X e. V ) -> W e. AssAlg ) |
|
| 12 | simp2 | |- ( ( W e. AssAlg /\ R e. K /\ X e. V ) -> R e. K ) |
|
| 13 | assaring | |- ( W e. AssAlg -> W e. Ring ) |
|
| 14 | 13 | 3ad2ant1 | |- ( ( W e. AssAlg /\ R e. K /\ X e. V ) -> W e. Ring ) |
| 15 | 4 7 | ringidcl | |- ( W e. Ring -> ( 1r ` W ) e. V ) |
| 16 | 14 15 | syl | |- ( ( W e. AssAlg /\ R e. K /\ X e. V ) -> ( 1r ` W ) e. V ) |
| 17 | simp3 | |- ( ( W e. AssAlg /\ R e. K /\ X e. V ) -> X e. V ) |
|
| 18 | 4 2 3 6 5 | assaass | |- ( ( W e. AssAlg /\ ( R e. K /\ ( 1r ` W ) e. V /\ X e. V ) ) -> ( ( R .x. ( 1r ` W ) ) .X. X ) = ( R .x. ( ( 1r ` W ) .X. X ) ) ) |
| 19 | 11 12 16 17 18 | syl13anc | |- ( ( W e. AssAlg /\ R e. K /\ X e. V ) -> ( ( R .x. ( 1r ` W ) ) .X. X ) = ( R .x. ( ( 1r ` W ) .X. X ) ) ) |
| 20 | 4 5 7 | ringlidm | |- ( ( W e. Ring /\ X e. V ) -> ( ( 1r ` W ) .X. X ) = X ) |
| 21 | 14 17 20 | syl2anc | |- ( ( W e. AssAlg /\ R e. K /\ X e. V ) -> ( ( 1r ` W ) .X. X ) = X ) |
| 22 | 21 | oveq2d | |- ( ( W e. AssAlg /\ R e. K /\ X e. V ) -> ( R .x. ( ( 1r ` W ) .X. X ) ) = ( R .x. X ) ) |
| 23 | 10 19 22 | 3eqtrd | |- ( ( W e. AssAlg /\ R e. K /\ X e. V ) -> ( ( A ` R ) .X. X ) = ( R .x. X ) ) |