This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The coefficient vector of a univariate polynomial is 0 almost everywhere. (Contributed by AV, 19-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | coe1ae0.a | |- A = ( coe1 ` F ) |
|
| coe1ae0.b | |- B = ( Base ` P ) |
||
| coe1ae0.p | |- P = ( Poly1 ` R ) |
||
| coe1ae0.z | |- .0. = ( 0g ` R ) |
||
| Assertion | coe1ae0 | |- ( F e. B -> E. s e. NN0 A. n e. NN0 ( s < n -> ( A ` n ) = .0. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1ae0.a | |- A = ( coe1 ` F ) |
|
| 2 | coe1ae0.b | |- B = ( Base ` P ) |
|
| 3 | coe1ae0.p | |- P = ( Poly1 ` R ) |
|
| 4 | coe1ae0.z | |- .0. = ( 0g ` R ) |
|
| 5 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 6 | 1 2 3 4 5 | coe1fsupp | |- ( F e. B -> A e. { a e. ( ( Base ` R ) ^m NN0 ) | a finSupp .0. } ) |
| 7 | breq1 | |- ( a = A -> ( a finSupp .0. <-> A finSupp .0. ) ) |
|
| 8 | 7 | elrab | |- ( A e. { a e. ( ( Base ` R ) ^m NN0 ) | a finSupp .0. } <-> ( A e. ( ( Base ` R ) ^m NN0 ) /\ A finSupp .0. ) ) |
| 9 | 4 | fvexi | |- .0. e. _V |
| 10 | 9 | a1i | |- ( F e. B -> .0. e. _V ) |
| 11 | fsuppmapnn0ub | |- ( ( A e. ( ( Base ` R ) ^m NN0 ) /\ .0. e. _V ) -> ( A finSupp .0. -> E. s e. NN0 A. n e. NN0 ( s < n -> ( A ` n ) = .0. ) ) ) |
|
| 12 | 10 11 | sylan2 | |- ( ( A e. ( ( Base ` R ) ^m NN0 ) /\ F e. B ) -> ( A finSupp .0. -> E. s e. NN0 A. n e. NN0 ( s < n -> ( A ` n ) = .0. ) ) ) |
| 13 | 12 | impancom | |- ( ( A e. ( ( Base ` R ) ^m NN0 ) /\ A finSupp .0. ) -> ( F e. B -> E. s e. NN0 A. n e. NN0 ( s < n -> ( A ` n ) = .0. ) ) ) |
| 14 | 8 13 | sylbi | |- ( A e. { a e. ( ( Base ` R ) ^m NN0 ) | a finSupp .0. } -> ( F e. B -> E. s e. NN0 A. n e. NN0 ( s < n -> ( A ` n ) = .0. ) ) ) |
| 15 | 6 14 | mpcom | |- ( F e. B -> E. s e. NN0 A. n e. NN0 ( s < n -> ( A ` n ) = .0. ) ) |