This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function value is zero outside of its support. (Contributed by Thierry Arnoux, 21-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvdifsupp.1 | |- ( ph -> F Fn A ) |
|
| fvdifsupp.2 | |- ( ph -> A e. V ) |
||
| fvdifsupp.3 | |- ( ph -> Z e. W ) |
||
| fvdifsupp.4 | |- ( ph -> X e. ( A \ ( F supp Z ) ) ) |
||
| Assertion | fvdifsupp | |- ( ph -> ( F ` X ) = Z ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvdifsupp.1 | |- ( ph -> F Fn A ) |
|
| 2 | fvdifsupp.2 | |- ( ph -> A e. V ) |
|
| 3 | fvdifsupp.3 | |- ( ph -> Z e. W ) |
|
| 4 | fvdifsupp.4 | |- ( ph -> X e. ( A \ ( F supp Z ) ) ) |
|
| 5 | 4 | eldifbd | |- ( ph -> -. X e. ( F supp Z ) ) |
| 6 | 4 | eldifad | |- ( ph -> X e. A ) |
| 7 | elsuppfn | |- ( ( F Fn A /\ A e. V /\ Z e. W ) -> ( X e. ( F supp Z ) <-> ( X e. A /\ ( F ` X ) =/= Z ) ) ) |
|
| 8 | 1 2 3 7 | syl3anc | |- ( ph -> ( X e. ( F supp Z ) <-> ( X e. A /\ ( F ` X ) =/= Z ) ) ) |
| 9 | 6 8 | mpbirand | |- ( ph -> ( X e. ( F supp Z ) <-> ( F ` X ) =/= Z ) ) |
| 10 | 9 | necon2bbid | |- ( ph -> ( ( F ` X ) = Z <-> -. X e. ( F supp Z ) ) ) |
| 11 | 5 10 | mpbird | |- ( ph -> ( F ` X ) = Z ) |