This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subring of a commutative ring is a commutative ring. (Contributed by Mario Carneiro, 10-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subrgring.1 | |- S = ( R |`s A ) |
|
| Assertion | subrgcrng | |- ( ( R e. CRing /\ A e. ( SubRing ` R ) ) -> S e. CRing ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgring.1 | |- S = ( R |`s A ) |
|
| 2 | 1 | subrgring | |- ( A e. ( SubRing ` R ) -> S e. Ring ) |
| 3 | 2 | adantl | |- ( ( R e. CRing /\ A e. ( SubRing ` R ) ) -> S e. Ring ) |
| 4 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 5 | 1 4 | mgpress | |- ( ( R e. CRing /\ A e. ( SubRing ` R ) ) -> ( ( mulGrp ` R ) |`s A ) = ( mulGrp ` S ) ) |
| 6 | 4 | crngmgp | |- ( R e. CRing -> ( mulGrp ` R ) e. CMnd ) |
| 7 | eqid | |- ( mulGrp ` S ) = ( mulGrp ` S ) |
|
| 8 | 7 | ringmgp | |- ( S e. Ring -> ( mulGrp ` S ) e. Mnd ) |
| 9 | 3 8 | syl | |- ( ( R e. CRing /\ A e. ( SubRing ` R ) ) -> ( mulGrp ` S ) e. Mnd ) |
| 10 | 5 9 | eqeltrd | |- ( ( R e. CRing /\ A e. ( SubRing ` R ) ) -> ( ( mulGrp ` R ) |`s A ) e. Mnd ) |
| 11 | eqid | |- ( ( mulGrp ` R ) |`s A ) = ( ( mulGrp ` R ) |`s A ) |
|
| 12 | 11 | subcmn | |- ( ( ( mulGrp ` R ) e. CMnd /\ ( ( mulGrp ` R ) |`s A ) e. Mnd ) -> ( ( mulGrp ` R ) |`s A ) e. CMnd ) |
| 13 | 6 10 12 | syl2an2r | |- ( ( R e. CRing /\ A e. ( SubRing ` R ) ) -> ( ( mulGrp ` R ) |`s A ) e. CMnd ) |
| 14 | 5 13 | eqeltrrd | |- ( ( R e. CRing /\ A e. ( SubRing ` R ) ) -> ( mulGrp ` S ) e. CMnd ) |
| 15 | 7 | iscrng | |- ( S e. CRing <-> ( S e. Ring /\ ( mulGrp ` S ) e. CMnd ) ) |
| 16 | 3 14 15 | sylanbrc | |- ( ( R e. CRing /\ A e. ( SubRing ` R ) ) -> S e. CRing ) |