This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Polynomial evaluation is a homomorphism (into the product ring). (Contributed by AV, 11-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evls1rhm.q | |- Q = ( S evalSub1 R ) |
|
| evls1rhm.b | |- B = ( Base ` S ) |
||
| evls1rhm.t | |- T = ( S ^s B ) |
||
| evls1rhm.u | |- U = ( S |`s R ) |
||
| evls1rhm.w | |- W = ( Poly1 ` U ) |
||
| Assertion | evls1rhm | |- ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> Q e. ( W RingHom T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evls1rhm.q | |- Q = ( S evalSub1 R ) |
|
| 2 | evls1rhm.b | |- B = ( Base ` S ) |
|
| 3 | evls1rhm.t | |- T = ( S ^s B ) |
|
| 4 | evls1rhm.u | |- U = ( S |`s R ) |
|
| 5 | evls1rhm.w | |- W = ( Poly1 ` U ) |
|
| 6 | 2 | subrgss | |- ( R e. ( SubRing ` S ) -> R C_ B ) |
| 7 | 6 | adantl | |- ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> R C_ B ) |
| 8 | elpwg | |- ( R e. ( SubRing ` S ) -> ( R e. ~P B <-> R C_ B ) ) |
|
| 9 | 8 | adantl | |- ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> ( R e. ~P B <-> R C_ B ) ) |
| 10 | 7 9 | mpbird | |- ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> R e. ~P B ) |
| 11 | eqid | |- ( 1o evalSub S ) = ( 1o evalSub S ) |
|
| 12 | 1 11 2 | evls1fval | |- ( ( S e. CRing /\ R e. ~P B ) -> Q = ( ( x e. ( B ^m ( B ^m 1o ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) o. ( ( 1o evalSub S ) ` R ) ) ) |
| 13 | 10 12 | syldan | |- ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> Q = ( ( x e. ( B ^m ( B ^m 1o ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) o. ( ( 1o evalSub S ) ` R ) ) ) |
| 14 | eqid | |- ( x e. ( B ^m ( B ^m 1o ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) = ( x e. ( B ^m ( B ^m 1o ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) |
|
| 15 | 2 3 14 | evls1rhmlem | |- ( S e. CRing -> ( x e. ( B ^m ( B ^m 1o ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) e. ( ( S ^s ( B ^m 1o ) ) RingHom T ) ) |
| 16 | 1on | |- 1o e. On |
|
| 17 | eqid | |- ( ( 1o evalSub S ) ` R ) = ( ( 1o evalSub S ) ` R ) |
|
| 18 | eqid | |- ( 1o mPoly U ) = ( 1o mPoly U ) |
|
| 19 | eqid | |- ( S ^s ( B ^m 1o ) ) = ( S ^s ( B ^m 1o ) ) |
|
| 20 | 17 18 4 19 2 | evlsrhm | |- ( ( 1o e. On /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> ( ( 1o evalSub S ) ` R ) e. ( ( 1o mPoly U ) RingHom ( S ^s ( B ^m 1o ) ) ) ) |
| 21 | 16 20 | mp3an1 | |- ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> ( ( 1o evalSub S ) ` R ) e. ( ( 1o mPoly U ) RingHom ( S ^s ( B ^m 1o ) ) ) ) |
| 22 | eqidd | |- ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> ( Base ` W ) = ( Base ` W ) ) |
|
| 23 | eqidd | |- ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> ( Base ` ( S ^s ( B ^m 1o ) ) ) = ( Base ` ( S ^s ( B ^m 1o ) ) ) ) |
|
| 24 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 25 | 5 24 | ply1bas | |- ( Base ` W ) = ( Base ` ( 1o mPoly U ) ) |
| 26 | 25 | a1i | |- ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> ( Base ` W ) = ( Base ` ( 1o mPoly U ) ) ) |
| 27 | eqid | |- ( +g ` W ) = ( +g ` W ) |
|
| 28 | 5 18 27 | ply1plusg | |- ( +g ` W ) = ( +g ` ( 1o mPoly U ) ) |
| 29 | 28 | a1i | |- ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> ( +g ` W ) = ( +g ` ( 1o mPoly U ) ) ) |
| 30 | 29 | oveqdr | |- ( ( ( S e. CRing /\ R e. ( SubRing ` S ) ) /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) -> ( x ( +g ` W ) y ) = ( x ( +g ` ( 1o mPoly U ) ) y ) ) |
| 31 | eqidd | |- ( ( ( S e. CRing /\ R e. ( SubRing ` S ) ) /\ ( x e. ( Base ` ( S ^s ( B ^m 1o ) ) ) /\ y e. ( Base ` ( S ^s ( B ^m 1o ) ) ) ) ) -> ( x ( +g ` ( S ^s ( B ^m 1o ) ) ) y ) = ( x ( +g ` ( S ^s ( B ^m 1o ) ) ) y ) ) |
|
| 32 | eqid | |- ( .r ` W ) = ( .r ` W ) |
|
| 33 | 5 18 32 | ply1mulr | |- ( .r ` W ) = ( .r ` ( 1o mPoly U ) ) |
| 34 | 33 | a1i | |- ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> ( .r ` W ) = ( .r ` ( 1o mPoly U ) ) ) |
| 35 | 34 | oveqdr | |- ( ( ( S e. CRing /\ R e. ( SubRing ` S ) ) /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) -> ( x ( .r ` W ) y ) = ( x ( .r ` ( 1o mPoly U ) ) y ) ) |
| 36 | eqidd | |- ( ( ( S e. CRing /\ R e. ( SubRing ` S ) ) /\ ( x e. ( Base ` ( S ^s ( B ^m 1o ) ) ) /\ y e. ( Base ` ( S ^s ( B ^m 1o ) ) ) ) ) -> ( x ( .r ` ( S ^s ( B ^m 1o ) ) ) y ) = ( x ( .r ` ( S ^s ( B ^m 1o ) ) ) y ) ) |
|
| 37 | 22 23 26 23 30 31 35 36 | rhmpropd | |- ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> ( W RingHom ( S ^s ( B ^m 1o ) ) ) = ( ( 1o mPoly U ) RingHom ( S ^s ( B ^m 1o ) ) ) ) |
| 38 | 21 37 | eleqtrrd | |- ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> ( ( 1o evalSub S ) ` R ) e. ( W RingHom ( S ^s ( B ^m 1o ) ) ) ) |
| 39 | rhmco | |- ( ( ( x e. ( B ^m ( B ^m 1o ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) e. ( ( S ^s ( B ^m 1o ) ) RingHom T ) /\ ( ( 1o evalSub S ) ` R ) e. ( W RingHom ( S ^s ( B ^m 1o ) ) ) ) -> ( ( x e. ( B ^m ( B ^m 1o ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) o. ( ( 1o evalSub S ) ` R ) ) e. ( W RingHom T ) ) |
|
| 40 | 15 38 39 | syl2an2r | |- ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> ( ( x e. ( B ^m ( B ^m 1o ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) o. ( ( 1o evalSub S ) ` R ) ) e. ( W RingHom T ) ) |
| 41 | 13 40 | eqeltrd | |- ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> Q e. ( W RingHom T ) ) |