This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Univariate polynomials form a left module. (Contributed by Stefan O'Rear, 26-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ply1lmod.p | |- P = ( Poly1 ` R ) |
|
| Assertion | ply1lmod | |- ( R e. Ring -> P e. LMod ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1lmod.p | |- P = ( Poly1 ` R ) |
|
| 2 | eqid | |- ( PwSer1 ` R ) = ( PwSer1 ` R ) |
|
| 3 | 2 | psr1lmod | |- ( R e. Ring -> ( PwSer1 ` R ) e. LMod ) |
| 4 | eqid | |- ( Poly1 ` R ) = ( Poly1 ` R ) |
|
| 5 | eqid | |- ( Base ` ( Poly1 ` R ) ) = ( Base ` ( Poly1 ` R ) ) |
|
| 6 | 4 5 | ply1bas | |- ( Base ` ( Poly1 ` R ) ) = ( Base ` ( 1o mPoly R ) ) |
| 7 | 4 2 5 | ply1lss | |- ( R e. Ring -> ( Base ` ( Poly1 ` R ) ) e. ( LSubSp ` ( PwSer1 ` R ) ) ) |
| 8 | 6 7 | eqeltrrid | |- ( R e. Ring -> ( Base ` ( 1o mPoly R ) ) e. ( LSubSp ` ( PwSer1 ` R ) ) ) |
| 9 | 1 2 | ply1val | |- P = ( ( PwSer1 ` R ) |`s ( Base ` ( 1o mPoly R ) ) ) |
| 10 | eqid | |- ( LSubSp ` ( PwSer1 ` R ) ) = ( LSubSp ` ( PwSer1 ` R ) ) |
|
| 11 | 9 10 | lsslmod | |- ( ( ( PwSer1 ` R ) e. LMod /\ ( Base ` ( 1o mPoly R ) ) e. ( LSubSp ` ( PwSer1 ` R ) ) ) -> P e. LMod ) |
| 12 | 3 8 11 | syl2anc | |- ( R e. Ring -> P e. LMod ) |