This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of scalar product for a left module. ( hvmulcl analog.) (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmodvscl.v | |- V = ( Base ` W ) |
|
| lmodvscl.f | |- F = ( Scalar ` W ) |
||
| lmodvscl.s | |- .x. = ( .s ` W ) |
||
| lmodvscl.k | |- K = ( Base ` F ) |
||
| Assertion | lmodvscl | |- ( ( W e. LMod /\ R e. K /\ X e. V ) -> ( R .x. X ) e. V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodvscl.v | |- V = ( Base ` W ) |
|
| 2 | lmodvscl.f | |- F = ( Scalar ` W ) |
|
| 3 | lmodvscl.s | |- .x. = ( .s ` W ) |
|
| 4 | lmodvscl.k | |- K = ( Base ` F ) |
|
| 5 | biid | |- ( W e. LMod <-> W e. LMod ) |
|
| 6 | pm4.24 | |- ( R e. K <-> ( R e. K /\ R e. K ) ) |
|
| 7 | pm4.24 | |- ( X e. V <-> ( X e. V /\ X e. V ) ) |
|
| 8 | eqid | |- ( +g ` W ) = ( +g ` W ) |
|
| 9 | eqid | |- ( +g ` F ) = ( +g ` F ) |
|
| 10 | eqid | |- ( .r ` F ) = ( .r ` F ) |
|
| 11 | eqid | |- ( 1r ` F ) = ( 1r ` F ) |
|
| 12 | 1 8 3 2 4 9 10 11 | lmodlema | |- ( ( W e. LMod /\ ( R e. K /\ R e. K ) /\ ( X e. V /\ X e. V ) ) -> ( ( ( R .x. X ) e. V /\ ( R .x. ( X ( +g ` W ) X ) ) = ( ( R .x. X ) ( +g ` W ) ( R .x. X ) ) /\ ( ( R ( +g ` F ) R ) .x. X ) = ( ( R .x. X ) ( +g ` W ) ( R .x. X ) ) ) /\ ( ( ( R ( .r ` F ) R ) .x. X ) = ( R .x. ( R .x. X ) ) /\ ( ( 1r ` F ) .x. X ) = X ) ) ) |
| 13 | 12 | simpld | |- ( ( W e. LMod /\ ( R e. K /\ R e. K ) /\ ( X e. V /\ X e. V ) ) -> ( ( R .x. X ) e. V /\ ( R .x. ( X ( +g ` W ) X ) ) = ( ( R .x. X ) ( +g ` W ) ( R .x. X ) ) /\ ( ( R ( +g ` F ) R ) .x. X ) = ( ( R .x. X ) ( +g ` W ) ( R .x. X ) ) ) ) |
| 14 | 13 | simp1d | |- ( ( W e. LMod /\ ( R e. K /\ R e. K ) /\ ( X e. V /\ X e. V ) ) -> ( R .x. X ) e. V ) |
| 15 | 5 6 7 14 | syl3anb | |- ( ( W e. LMod /\ R e. K /\ X e. V ) -> ( R .x. X ) e. V ) |