This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Finite commutative sums in a power structure are taken componentwise. (Contributed by Stefan O'Rear, 1-Feb-2015) (Revised by Mario Carneiro, 3-Jul-2015) (Revised by AV, 9-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwsgsum.y | |- Y = ( R ^s I ) |
|
| pwsgsum.b | |- B = ( Base ` R ) |
||
| pwsgsum.z | |- .0. = ( 0g ` Y ) |
||
| pwsgsum.i | |- ( ph -> I e. V ) |
||
| pwsgsum.j | |- ( ph -> J e. W ) |
||
| pwsgsum.r | |- ( ph -> R e. CMnd ) |
||
| pwsgsum.f | |- ( ( ph /\ ( x e. I /\ y e. J ) ) -> U e. B ) |
||
| pwsgsum.w | |- ( ph -> ( y e. J |-> ( x e. I |-> U ) ) finSupp .0. ) |
||
| Assertion | pwsgsum | |- ( ph -> ( Y gsum ( y e. J |-> ( x e. I |-> U ) ) ) = ( x e. I |-> ( R gsum ( y e. J |-> U ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsgsum.y | |- Y = ( R ^s I ) |
|
| 2 | pwsgsum.b | |- B = ( Base ` R ) |
|
| 3 | pwsgsum.z | |- .0. = ( 0g ` Y ) |
|
| 4 | pwsgsum.i | |- ( ph -> I e. V ) |
|
| 5 | pwsgsum.j | |- ( ph -> J e. W ) |
|
| 6 | pwsgsum.r | |- ( ph -> R e. CMnd ) |
|
| 7 | pwsgsum.f | |- ( ( ph /\ ( x e. I /\ y e. J ) ) -> U e. B ) |
|
| 8 | pwsgsum.w | |- ( ph -> ( y e. J |-> ( x e. I |-> U ) ) finSupp .0. ) |
|
| 9 | eqid | |- ( Scalar ` R ) = ( Scalar ` R ) |
|
| 10 | 1 9 | pwsval | |- ( ( R e. CMnd /\ I e. V ) -> Y = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) |
| 11 | 6 4 10 | syl2anc | |- ( ph -> Y = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) |
| 12 | 11 | oveq1d | |- ( ph -> ( Y gsum ( y e. J |-> ( x e. I |-> U ) ) ) = ( ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) gsum ( y e. J |-> ( x e. I |-> U ) ) ) ) |
| 13 | fconstmpt | |- ( I X. { R } ) = ( x e. I |-> R ) |
|
| 14 | 13 | oveq2i | |- ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) = ( ( Scalar ` R ) Xs_ ( x e. I |-> R ) ) |
| 15 | eqid | |- ( 0g ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) = ( 0g ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) |
|
| 16 | fvexd | |- ( ph -> ( Scalar ` R ) e. _V ) |
|
| 17 | 6 | adantr | |- ( ( ph /\ x e. I ) -> R e. CMnd ) |
| 18 | 11 | fveq2d | |- ( ph -> ( 0g ` Y ) = ( 0g ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) |
| 19 | 3 18 | eqtrid | |- ( ph -> .0. = ( 0g ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) |
| 20 | 8 19 | breqtrd | |- ( ph -> ( y e. J |-> ( x e. I |-> U ) ) finSupp ( 0g ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) |
| 21 | 14 2 15 4 5 16 17 7 20 | prdsgsum | |- ( ph -> ( ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) gsum ( y e. J |-> ( x e. I |-> U ) ) ) = ( x e. I |-> ( R gsum ( y e. J |-> U ) ) ) ) |
| 22 | 12 21 | eqtrd | |- ( ph -> ( Y gsum ( y e. J |-> ( x e. I |-> U ) ) ) = ( x e. I |-> ( R gsum ( y e. J |-> U ) ) ) ) |