This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity in a structure power of a monoid. (Contributed by Mario Carneiro, 11-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwsmnd.y | |- Y = ( R ^s I ) |
|
| pws0g.z | |- .0. = ( 0g ` R ) |
||
| Assertion | pws0g | |- ( ( R e. Mnd /\ I e. V ) -> ( I X. { .0. } ) = ( 0g ` Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsmnd.y | |- Y = ( R ^s I ) |
|
| 2 | pws0g.z | |- .0. = ( 0g ` R ) |
|
| 3 | eqid | |- ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) |
|
| 4 | simpr | |- ( ( R e. Mnd /\ I e. V ) -> I e. V ) |
|
| 5 | fvexd | |- ( ( R e. Mnd /\ I e. V ) -> ( Scalar ` R ) e. _V ) |
|
| 6 | fconst6g | |- ( R e. Mnd -> ( I X. { R } ) : I --> Mnd ) |
|
| 7 | 6 | adantr | |- ( ( R e. Mnd /\ I e. V ) -> ( I X. { R } ) : I --> Mnd ) |
| 8 | 3 4 5 7 | prds0g | |- ( ( R e. Mnd /\ I e. V ) -> ( 0g o. ( I X. { R } ) ) = ( 0g ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) |
| 9 | fconstmpt | |- ( I X. { .0. } ) = ( x e. I |-> .0. ) |
|
| 10 | elex | |- ( R e. Mnd -> R e. _V ) |
|
| 11 | 10 | ad2antrr | |- ( ( ( R e. Mnd /\ I e. V ) /\ x e. I ) -> R e. _V ) |
| 12 | fconstmpt | |- ( I X. { R } ) = ( x e. I |-> R ) |
|
| 13 | 12 | a1i | |- ( ( R e. Mnd /\ I e. V ) -> ( I X. { R } ) = ( x e. I |-> R ) ) |
| 14 | fn0g | |- 0g Fn _V |
|
| 15 | 14 | a1i | |- ( ( R e. Mnd /\ I e. V ) -> 0g Fn _V ) |
| 16 | dffn5 | |- ( 0g Fn _V <-> 0g = ( r e. _V |-> ( 0g ` r ) ) ) |
|
| 17 | 15 16 | sylib | |- ( ( R e. Mnd /\ I e. V ) -> 0g = ( r e. _V |-> ( 0g ` r ) ) ) |
| 18 | fveq2 | |- ( r = R -> ( 0g ` r ) = ( 0g ` R ) ) |
|
| 19 | 18 2 | eqtr4di | |- ( r = R -> ( 0g ` r ) = .0. ) |
| 20 | 11 13 17 19 | fmptco | |- ( ( R e. Mnd /\ I e. V ) -> ( 0g o. ( I X. { R } ) ) = ( x e. I |-> .0. ) ) |
| 21 | 9 20 | eqtr4id | |- ( ( R e. Mnd /\ I e. V ) -> ( I X. { .0. } ) = ( 0g o. ( I X. { R } ) ) ) |
| 22 | eqid | |- ( Scalar ` R ) = ( Scalar ` R ) |
|
| 23 | 1 22 | pwsval | |- ( ( R e. Mnd /\ I e. V ) -> Y = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) |
| 24 | 23 | fveq2d | |- ( ( R e. Mnd /\ I e. V ) -> ( 0g ` Y ) = ( 0g ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) |
| 25 | 8 21 24 | 3eqtr4d | |- ( ( R e. Mnd /\ I e. V ) -> ( I X. { .0. } ) = ( 0g ` Y ) ) |