This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The algebra scalar lifting function is a function into the base set. (Contributed by Mario Carneiro, 4-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | asclf.a | |- A = ( algSc ` W ) |
|
| asclf.f | |- F = ( Scalar ` W ) |
||
| asclf.r | |- ( ph -> W e. Ring ) |
||
| asclf.l | |- ( ph -> W e. LMod ) |
||
| asclf.k | |- K = ( Base ` F ) |
||
| asclf.b | |- B = ( Base ` W ) |
||
| Assertion | asclf | |- ( ph -> A : K --> B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | asclf.a | |- A = ( algSc ` W ) |
|
| 2 | asclf.f | |- F = ( Scalar ` W ) |
|
| 3 | asclf.r | |- ( ph -> W e. Ring ) |
|
| 4 | asclf.l | |- ( ph -> W e. LMod ) |
|
| 5 | asclf.k | |- K = ( Base ` F ) |
|
| 6 | asclf.b | |- B = ( Base ` W ) |
|
| 7 | 4 | adantr | |- ( ( ph /\ x e. K ) -> W e. LMod ) |
| 8 | simpr | |- ( ( ph /\ x e. K ) -> x e. K ) |
|
| 9 | eqid | |- ( 1r ` W ) = ( 1r ` W ) |
|
| 10 | 6 9 | ringidcl | |- ( W e. Ring -> ( 1r ` W ) e. B ) |
| 11 | 3 10 | syl | |- ( ph -> ( 1r ` W ) e. B ) |
| 12 | 11 | adantr | |- ( ( ph /\ x e. K ) -> ( 1r ` W ) e. B ) |
| 13 | eqid | |- ( .s ` W ) = ( .s ` W ) |
|
| 14 | 6 2 13 5 | lmodvscl | |- ( ( W e. LMod /\ x e. K /\ ( 1r ` W ) e. B ) -> ( x ( .s ` W ) ( 1r ` W ) ) e. B ) |
| 15 | 7 8 12 14 | syl3anc | |- ( ( ph /\ x e. K ) -> ( x ( .s ` W ) ( 1r ` W ) ) e. B ) |
| 16 | 1 2 5 13 9 | asclfval | |- A = ( x e. K |-> ( x ( .s ` W ) ( 1r ` W ) ) ) |
| 17 | 15 16 | fmptd | |- ( ph -> A : K --> B ) |