This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of multiplication in a structure power. (Contributed by Mario Carneiro, 11-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwsplusgval.y | |- Y = ( R ^s I ) |
|
| pwsplusgval.b | |- B = ( Base ` Y ) |
||
| pwsplusgval.r | |- ( ph -> R e. V ) |
||
| pwsplusgval.i | |- ( ph -> I e. W ) |
||
| pwsplusgval.f | |- ( ph -> F e. B ) |
||
| pwsplusgval.g | |- ( ph -> G e. B ) |
||
| pwsmulrval.a | |- .x. = ( .r ` R ) |
||
| pwsmulrval.p | |- .xb = ( .r ` Y ) |
||
| Assertion | pwsmulrval | |- ( ph -> ( F .xb G ) = ( F oF .x. G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsplusgval.y | |- Y = ( R ^s I ) |
|
| 2 | pwsplusgval.b | |- B = ( Base ` Y ) |
|
| 3 | pwsplusgval.r | |- ( ph -> R e. V ) |
|
| 4 | pwsplusgval.i | |- ( ph -> I e. W ) |
|
| 5 | pwsplusgval.f | |- ( ph -> F e. B ) |
|
| 6 | pwsplusgval.g | |- ( ph -> G e. B ) |
|
| 7 | pwsmulrval.a | |- .x. = ( .r ` R ) |
|
| 8 | pwsmulrval.p | |- .xb = ( .r ` Y ) |
|
| 9 | eqid | |- ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) |
|
| 10 | eqid | |- ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) = ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) |
|
| 11 | fvexd | |- ( ph -> ( Scalar ` R ) e. _V ) |
|
| 12 | fnconstg | |- ( R e. V -> ( I X. { R } ) Fn I ) |
|
| 13 | 3 12 | syl | |- ( ph -> ( I X. { R } ) Fn I ) |
| 14 | eqid | |- ( Scalar ` R ) = ( Scalar ` R ) |
|
| 15 | 1 14 | pwsval | |- ( ( R e. V /\ I e. W ) -> Y = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) |
| 16 | 3 4 15 | syl2anc | |- ( ph -> Y = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) |
| 17 | 16 | fveq2d | |- ( ph -> ( Base ` Y ) = ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) |
| 18 | 2 17 | eqtrid | |- ( ph -> B = ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) |
| 19 | 5 18 | eleqtrd | |- ( ph -> F e. ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) |
| 20 | 6 18 | eleqtrd | |- ( ph -> G e. ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) |
| 21 | eqid | |- ( .r ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) = ( .r ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) |
|
| 22 | 9 10 11 4 13 19 20 21 | prdsmulrval | |- ( ph -> ( F ( .r ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) G ) = ( x e. I |-> ( ( F ` x ) ( .r ` ( ( I X. { R } ) ` x ) ) ( G ` x ) ) ) ) |
| 23 | fvconst2g | |- ( ( R e. V /\ x e. I ) -> ( ( I X. { R } ) ` x ) = R ) |
|
| 24 | 3 23 | sylan | |- ( ( ph /\ x e. I ) -> ( ( I X. { R } ) ` x ) = R ) |
| 25 | 24 | fveq2d | |- ( ( ph /\ x e. I ) -> ( .r ` ( ( I X. { R } ) ` x ) ) = ( .r ` R ) ) |
| 26 | 25 7 | eqtr4di | |- ( ( ph /\ x e. I ) -> ( .r ` ( ( I X. { R } ) ` x ) ) = .x. ) |
| 27 | 26 | oveqd | |- ( ( ph /\ x e. I ) -> ( ( F ` x ) ( .r ` ( ( I X. { R } ) ` x ) ) ( G ` x ) ) = ( ( F ` x ) .x. ( G ` x ) ) ) |
| 28 | 27 | mpteq2dva | |- ( ph -> ( x e. I |-> ( ( F ` x ) ( .r ` ( ( I X. { R } ) ` x ) ) ( G ` x ) ) ) = ( x e. I |-> ( ( F ` x ) .x. ( G ` x ) ) ) ) |
| 29 | 22 28 | eqtrd | |- ( ph -> ( F ( .r ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) G ) = ( x e. I |-> ( ( F ` x ) .x. ( G ` x ) ) ) ) |
| 30 | 16 | fveq2d | |- ( ph -> ( .r ` Y ) = ( .r ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) |
| 31 | 8 30 | eqtrid | |- ( ph -> .xb = ( .r ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) |
| 32 | 31 | oveqd | |- ( ph -> ( F .xb G ) = ( F ( .r ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) G ) ) |
| 33 | fvexd | |- ( ( ph /\ x e. I ) -> ( F ` x ) e. _V ) |
|
| 34 | fvexd | |- ( ( ph /\ x e. I ) -> ( G ` x ) e. _V ) |
|
| 35 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 36 | 1 35 2 3 4 5 | pwselbas | |- ( ph -> F : I --> ( Base ` R ) ) |
| 37 | 36 | feqmptd | |- ( ph -> F = ( x e. I |-> ( F ` x ) ) ) |
| 38 | 1 35 2 3 4 6 | pwselbas | |- ( ph -> G : I --> ( Base ` R ) ) |
| 39 | 38 | feqmptd | |- ( ph -> G = ( x e. I |-> ( G ` x ) ) ) |
| 40 | 4 33 34 37 39 | offval2 | |- ( ph -> ( F oF .x. G ) = ( x e. I |-> ( ( F ` x ) .x. ( G ` x ) ) ) ) |
| 41 | 29 32 40 | 3eqtr4d | |- ( ph -> ( F .xb G ) = ( F oF .x. G ) ) |