This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Finite support of univariate polynomial coefficient vectors. (Contributed by Stefan O'Rear, 21-Mar-2015) (Revised by AV, 19-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | coe1sfi.a | |- A = ( coe1 ` F ) |
|
| coe1sfi.b | |- B = ( Base ` P ) |
||
| coe1sfi.p | |- P = ( Poly1 ` R ) |
||
| coe1sfi.z | |- .0. = ( 0g ` R ) |
||
| Assertion | coe1sfi | |- ( F e. B -> A finSupp .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1sfi.a | |- A = ( coe1 ` F ) |
|
| 2 | coe1sfi.b | |- B = ( Base ` P ) |
|
| 3 | coe1sfi.p | |- P = ( Poly1 ` R ) |
|
| 4 | coe1sfi.z | |- .0. = ( 0g ` R ) |
|
| 5 | df1o2 | |- 1o = { (/) } |
|
| 6 | nn0ex | |- NN0 e. _V |
|
| 7 | 0ex | |- (/) e. _V |
|
| 8 | eqid | |- ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) = ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) |
|
| 9 | 5 6 7 8 | mapsncnv | |- `' ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) = ( y e. NN0 |-> ( 1o X. { y } ) ) |
| 10 | 1 2 3 9 | coe1fval2 | |- ( F e. B -> A = ( F o. `' ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) ) ) |
| 11 | eqid | |- ( 1o mPoly R ) = ( 1o mPoly R ) |
|
| 12 | eqid | |- ( Base ` ( 1o mPoly R ) ) = ( Base ` ( 1o mPoly R ) ) |
|
| 13 | 3 2 | ply1bascl2 | |- ( F e. B -> F e. ( Base ` ( 1o mPoly R ) ) ) |
| 14 | 11 12 4 13 | mplelsfi | |- ( F e. B -> F finSupp .0. ) |
| 15 | 5 6 7 8 | mapsnf1o2 | |- ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) : ( NN0 ^m 1o ) -1-1-onto-> NN0 |
| 16 | f1ocnv | |- ( ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) : ( NN0 ^m 1o ) -1-1-onto-> NN0 -> `' ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) : NN0 -1-1-onto-> ( NN0 ^m 1o ) ) |
|
| 17 | f1of1 | |- ( `' ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) : NN0 -1-1-onto-> ( NN0 ^m 1o ) -> `' ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) : NN0 -1-1-> ( NN0 ^m 1o ) ) |
|
| 18 | 15 16 17 | mp2b | |- `' ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) : NN0 -1-1-> ( NN0 ^m 1o ) |
| 19 | 18 | a1i | |- ( F e. B -> `' ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) : NN0 -1-1-> ( NN0 ^m 1o ) ) |
| 20 | 4 | fvexi | |- .0. e. _V |
| 21 | 20 | a1i | |- ( F e. B -> .0. e. _V ) |
| 22 | id | |- ( F e. B -> F e. B ) |
|
| 23 | 14 19 21 22 | fsuppco | |- ( F e. B -> ( F o. `' ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) ) finSupp .0. ) |
| 24 | 10 23 | eqbrtrd | |- ( F e. B -> A finSupp .0. ) |