This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Evaluation of a univariate subring polynomial is the same as the evaluation in the bigger ring. (Contributed by Thierry Arnoux, 23-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ressply1evl2.q | |- Q = ( S evalSub1 R ) |
|
| ressply1evl2.k | |- K = ( Base ` S ) |
||
| ressply1evl2.w | |- W = ( Poly1 ` U ) |
||
| ressply1evl2.u | |- U = ( S |`s R ) |
||
| ressply1evl2.b | |- B = ( Base ` W ) |
||
| ressply1evl.e | |- E = ( eval1 ` S ) |
||
| ressply1evl.s | |- ( ph -> S e. CRing ) |
||
| ressply1evl.r | |- ( ph -> R e. ( SubRing ` S ) ) |
||
| Assertion | ressply1evl | |- ( ph -> Q = ( E |` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressply1evl2.q | |- Q = ( S evalSub1 R ) |
|
| 2 | ressply1evl2.k | |- K = ( Base ` S ) |
|
| 3 | ressply1evl2.w | |- W = ( Poly1 ` U ) |
|
| 4 | ressply1evl2.u | |- U = ( S |`s R ) |
|
| 5 | ressply1evl2.b | |- B = ( Base ` W ) |
|
| 6 | ressply1evl.e | |- E = ( eval1 ` S ) |
|
| 7 | ressply1evl.s | |- ( ph -> S e. CRing ) |
|
| 8 | ressply1evl.r | |- ( ph -> R e. ( SubRing ` S ) ) |
|
| 9 | 6 2 | evl1fval1 | |- E = ( S evalSub1 K ) |
| 10 | eqid | |- ( Poly1 ` ( S |`s K ) ) = ( Poly1 ` ( S |`s K ) ) |
|
| 11 | eqid | |- ( S |`s K ) = ( S |`s K ) |
|
| 12 | eqid | |- ( Base ` ( Poly1 ` ( S |`s K ) ) ) = ( Base ` ( Poly1 ` ( S |`s K ) ) ) |
|
| 13 | 7 | adantr | |- ( ( ph /\ m e. B ) -> S e. CRing ) |
| 14 | 7 | crngringd | |- ( ph -> S e. Ring ) |
| 15 | 2 | subrgid | |- ( S e. Ring -> K e. ( SubRing ` S ) ) |
| 16 | 14 15 | syl | |- ( ph -> K e. ( SubRing ` S ) ) |
| 17 | 16 | adantr | |- ( ( ph /\ m e. B ) -> K e. ( SubRing ` S ) ) |
| 18 | eqid | |- ( Poly1 ` S ) = ( Poly1 ` S ) |
|
| 19 | eqid | |- ( PwSer1 ` U ) = ( PwSer1 ` U ) |
|
| 20 | eqid | |- ( Base ` ( PwSer1 ` U ) ) = ( Base ` ( PwSer1 ` U ) ) |
|
| 21 | eqid | |- ( Base ` ( Poly1 ` S ) ) = ( Base ` ( Poly1 ` S ) ) |
|
| 22 | 18 4 3 5 8 19 20 21 | ressply1bas2 | |- ( ph -> B = ( ( Base ` ( PwSer1 ` U ) ) i^i ( Base ` ( Poly1 ` S ) ) ) ) |
| 23 | inss2 | |- ( ( Base ` ( PwSer1 ` U ) ) i^i ( Base ` ( Poly1 ` S ) ) ) C_ ( Base ` ( Poly1 ` S ) ) |
|
| 24 | 22 23 | eqsstrdi | |- ( ph -> B C_ ( Base ` ( Poly1 ` S ) ) ) |
| 25 | 2 | ressid | |- ( S e. CRing -> ( S |`s K ) = S ) |
| 26 | 7 25 | syl | |- ( ph -> ( S |`s K ) = S ) |
| 27 | 26 | fveq2d | |- ( ph -> ( Poly1 ` ( S |`s K ) ) = ( Poly1 ` S ) ) |
| 28 | 27 | fveq2d | |- ( ph -> ( Base ` ( Poly1 ` ( S |`s K ) ) ) = ( Base ` ( Poly1 ` S ) ) ) |
| 29 | 24 28 | sseqtrrd | |- ( ph -> B C_ ( Base ` ( Poly1 ` ( S |`s K ) ) ) ) |
| 30 | 29 | sselda | |- ( ( ph /\ m e. B ) -> m e. ( Base ` ( Poly1 ` ( S |`s K ) ) ) ) |
| 31 | eqid | |- ( .r ` S ) = ( .r ` S ) |
|
| 32 | eqid | |- ( .g ` ( mulGrp ` S ) ) = ( .g ` ( mulGrp ` S ) ) |
|
| 33 | eqid | |- ( coe1 ` m ) = ( coe1 ` m ) |
|
| 34 | 9 2 10 11 12 13 17 30 31 32 33 | evls1fpws | |- ( ( ph /\ m e. B ) -> ( E ` m ) = ( x e. K |-> ( S gsum ( k e. NN0 |-> ( ( ( coe1 ` m ) ` k ) ( .r ` S ) ( k ( .g ` ( mulGrp ` S ) ) x ) ) ) ) ) ) |
| 35 | 8 | adantr | |- ( ( ph /\ m e. B ) -> R e. ( SubRing ` S ) ) |
| 36 | simpr | |- ( ( ph /\ m e. B ) -> m e. B ) |
|
| 37 | 1 2 3 4 5 13 35 36 31 32 33 | evls1fpws | |- ( ( ph /\ m e. B ) -> ( Q ` m ) = ( x e. K |-> ( S gsum ( k e. NN0 |-> ( ( ( coe1 ` m ) ` k ) ( .r ` S ) ( k ( .g ` ( mulGrp ` S ) ) x ) ) ) ) ) ) |
| 38 | 34 37 | eqtr4d | |- ( ( ph /\ m e. B ) -> ( E ` m ) = ( Q ` m ) ) |
| 39 | 38 | ralrimiva | |- ( ph -> A. m e. B ( E ` m ) = ( Q ` m ) ) |
| 40 | eqid | |- ( S ^s K ) = ( S ^s K ) |
|
| 41 | 6 18 40 2 | evl1rhm | |- ( S e. CRing -> E e. ( ( Poly1 ` S ) RingHom ( S ^s K ) ) ) |
| 42 | eqid | |- ( Base ` ( S ^s K ) ) = ( Base ` ( S ^s K ) ) |
|
| 43 | 21 42 | rhmf | |- ( E e. ( ( Poly1 ` S ) RingHom ( S ^s K ) ) -> E : ( Base ` ( Poly1 ` S ) ) --> ( Base ` ( S ^s K ) ) ) |
| 44 | 7 41 43 | 3syl | |- ( ph -> E : ( Base ` ( Poly1 ` S ) ) --> ( Base ` ( S ^s K ) ) ) |
| 45 | 44 | ffnd | |- ( ph -> E Fn ( Base ` ( Poly1 ` S ) ) ) |
| 46 | 1 2 40 4 3 | evls1rhm | |- ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> Q e. ( W RingHom ( S ^s K ) ) ) |
| 47 | 7 8 46 | syl2anc | |- ( ph -> Q e. ( W RingHom ( S ^s K ) ) ) |
| 48 | 5 42 | rhmf | |- ( Q e. ( W RingHom ( S ^s K ) ) -> Q : B --> ( Base ` ( S ^s K ) ) ) |
| 49 | 47 48 | syl | |- ( ph -> Q : B --> ( Base ` ( S ^s K ) ) ) |
| 50 | 49 | ffnd | |- ( ph -> Q Fn B ) |
| 51 | fvreseq1 | |- ( ( ( E Fn ( Base ` ( Poly1 ` S ) ) /\ Q Fn B ) /\ B C_ ( Base ` ( Poly1 ` S ) ) ) -> ( ( E |` B ) = Q <-> A. m e. B ( E ` m ) = ( Q ` m ) ) ) |
|
| 52 | 45 50 24 51 | syl21anc | |- ( ph -> ( ( E |` B ) = Q <-> A. m e. B ( E ` m ) = ( Q ` m ) ) ) |
| 53 | 39 52 | mpbird | |- ( ph -> ( E |` B ) = Q ) |
| 54 | 53 | eqcomd | |- ( ph -> Q = ( E |` B ) ) |