This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Evaluation of a univariate subring polynomial as a function in a power series. (Contributed by Thierry Arnoux, 23-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ressply1evl2.q | ⊢ 𝑄 = ( 𝑆 evalSub1 𝑅 ) | |
| ressply1evl2.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | ||
| ressply1evl2.w | ⊢ 𝑊 = ( Poly1 ‘ 𝑈 ) | ||
| ressply1evl2.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | ||
| ressply1evl2.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | ||
| evls1fpws.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | ||
| evls1fpws.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | ||
| evls1fpws.y | ⊢ ( 𝜑 → 𝑀 ∈ 𝐵 ) | ||
| evls1fpws.1 | ⊢ · = ( .r ‘ 𝑆 ) | ||
| evls1fpws.2 | ⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑆 ) ) | ||
| evls1fpws.a | ⊢ 𝐴 = ( coe1 ‘ 𝑀 ) | ||
| Assertion | evls1fpws | ⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) = ( 𝑥 ∈ 𝐾 ↦ ( 𝑆 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressply1evl2.q | ⊢ 𝑄 = ( 𝑆 evalSub1 𝑅 ) | |
| 2 | ressply1evl2.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | |
| 3 | ressply1evl2.w | ⊢ 𝑊 = ( Poly1 ‘ 𝑈 ) | |
| 4 | ressply1evl2.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | |
| 5 | ressply1evl2.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
| 6 | evls1fpws.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | |
| 7 | evls1fpws.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | |
| 8 | evls1fpws.y | ⊢ ( 𝜑 → 𝑀 ∈ 𝐵 ) | |
| 9 | evls1fpws.1 | ⊢ · = ( .r ‘ 𝑆 ) | |
| 10 | evls1fpws.2 | ⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑆 ) ) | |
| 11 | evls1fpws.a | ⊢ 𝐴 = ( coe1 ‘ 𝑀 ) | |
| 12 | 4 | subrgring | ⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑈 ∈ Ring ) |
| 13 | 7 12 | syl | ⊢ ( 𝜑 → 𝑈 ∈ Ring ) |
| 14 | eqid | ⊢ ( var1 ‘ 𝑈 ) = ( var1 ‘ 𝑈 ) | |
| 15 | eqid | ⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) | |
| 16 | eqid | ⊢ ( mulGrp ‘ 𝑊 ) = ( mulGrp ‘ 𝑊 ) | |
| 17 | eqid | ⊢ ( .g ‘ ( mulGrp ‘ 𝑊 ) ) = ( .g ‘ ( mulGrp ‘ 𝑊 ) ) | |
| 18 | 3 14 5 15 16 17 11 | ply1coe | ⊢ ( ( 𝑈 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → 𝑀 = ( 𝑊 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) ) ) ) |
| 19 | 13 8 18 | syl2anc | ⊢ ( 𝜑 → 𝑀 = ( 𝑊 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) ) ) ) |
| 20 | 19 | fveq2d | ⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) = ( 𝑄 ‘ ( 𝑊 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) ) ) ) ) |
| 21 | eqid | ⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) | |
| 22 | eqid | ⊢ ( 𝑆 ↑s 𝐾 ) = ( 𝑆 ↑s 𝐾 ) | |
| 23 | 3 | ply1lmod | ⊢ ( 𝑈 ∈ Ring → 𝑊 ∈ LMod ) |
| 24 | 13 23 | syl | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 25 | 24 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑊 ∈ LMod ) |
| 26 | eqid | ⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) | |
| 27 | 11 5 3 26 | coe1fvalcl | ⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑘 ) ∈ ( Base ‘ 𝑈 ) ) |
| 28 | 8 27 | sylan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑘 ) ∈ ( Base ‘ 𝑈 ) ) |
| 29 | 3 | ply1sca | ⊢ ( 𝑈 ∈ Ring → 𝑈 = ( Scalar ‘ 𝑊 ) ) |
| 30 | 13 29 | syl | ⊢ ( 𝜑 → 𝑈 = ( Scalar ‘ 𝑊 ) ) |
| 31 | 30 | fveq2d | ⊢ ( 𝜑 → ( Base ‘ 𝑈 ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 32 | 31 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( Base ‘ 𝑈 ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 33 | 28 32 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑘 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 34 | 16 5 | mgpbas | ⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑊 ) ) |
| 35 | 3 | ply1ring | ⊢ ( 𝑈 ∈ Ring → 𝑊 ∈ Ring ) |
| 36 | 13 35 | syl | ⊢ ( 𝜑 → 𝑊 ∈ Ring ) |
| 37 | 36 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑊 ∈ Ring ) |
| 38 | 16 | ringmgp | ⊢ ( 𝑊 ∈ Ring → ( mulGrp ‘ 𝑊 ) ∈ Mnd ) |
| 39 | 37 38 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( mulGrp ‘ 𝑊 ) ∈ Mnd ) |
| 40 | simpr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) | |
| 41 | 13 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑈 ∈ Ring ) |
| 42 | 14 3 5 | vr1cl | ⊢ ( 𝑈 ∈ Ring → ( var1 ‘ 𝑈 ) ∈ 𝐵 ) |
| 43 | 41 42 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( var1 ‘ 𝑈 ) ∈ 𝐵 ) |
| 44 | 34 17 39 40 43 | mulgnn0cld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ∈ 𝐵 ) |
| 45 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 46 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 47 | 5 45 15 46 | lmodvscl | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐴 ‘ 𝑘 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ∈ 𝐵 ) → ( ( 𝐴 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) ∈ 𝐵 ) |
| 48 | 25 33 44 47 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) ∈ 𝐵 ) |
| 49 | ssidd | ⊢ ( 𝜑 → ℕ0 ⊆ ℕ0 ) | |
| 50 | fvexd | ⊢ ( 𝜑 → ( 0g ‘ 𝑊 ) ∈ V ) | |
| 51 | fveq2 | ⊢ ( 𝑘 = 𝑗 → ( 𝐴 ‘ 𝑘 ) = ( 𝐴 ‘ 𝑗 ) ) | |
| 52 | oveq1 | ⊢ ( 𝑘 = 𝑗 → ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) = ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) | |
| 53 | 51 52 | oveq12d | ⊢ ( 𝑘 = 𝑗 → ( ( 𝐴 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) = ( ( 𝐴 ‘ 𝑗 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) ) |
| 54 | eqid | ⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) | |
| 55 | 11 5 3 54 | coe1ae0 | ⊢ ( 𝑀 ∈ 𝐵 → ∃ 𝑖 ∈ ℕ0 ∀ 𝑗 ∈ ℕ0 ( 𝑖 < 𝑗 → ( 𝐴 ‘ 𝑗 ) = ( 0g ‘ 𝑈 ) ) ) |
| 56 | 8 55 | syl | ⊢ ( 𝜑 → ∃ 𝑖 ∈ ℕ0 ∀ 𝑗 ∈ ℕ0 ( 𝑖 < 𝑗 → ( 𝐴 ‘ 𝑗 ) = ( 0g ‘ 𝑈 ) ) ) |
| 57 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐴 ‘ 𝑗 ) = ( 0g ‘ 𝑈 ) ) → ( 𝐴 ‘ 𝑗 ) = ( 0g ‘ 𝑈 ) ) | |
| 58 | 30 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐴 ‘ 𝑗 ) = ( 0g ‘ 𝑈 ) ) → 𝑈 = ( Scalar ‘ 𝑊 ) ) |
| 59 | 58 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐴 ‘ 𝑗 ) = ( 0g ‘ 𝑈 ) ) → ( 0g ‘ 𝑈 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 60 | 57 59 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐴 ‘ 𝑗 ) = ( 0g ‘ 𝑈 ) ) → ( 𝐴 ‘ 𝑗 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 61 | 60 | oveq1d | ⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐴 ‘ 𝑗 ) = ( 0g ‘ 𝑈 ) ) → ( ( 𝐴 ‘ 𝑗 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) = ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) ) |
| 62 | 24 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐴 ‘ 𝑗 ) = ( 0g ‘ 𝑈 ) ) → 𝑊 ∈ LMod ) |
| 63 | 36 38 | syl | ⊢ ( 𝜑 → ( mulGrp ‘ 𝑊 ) ∈ Mnd ) |
| 64 | 63 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( mulGrp ‘ 𝑊 ) ∈ Mnd ) |
| 65 | simpr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → 𝑗 ∈ ℕ0 ) | |
| 66 | 13 42 | syl | ⊢ ( 𝜑 → ( var1 ‘ 𝑈 ) ∈ 𝐵 ) |
| 67 | 66 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( var1 ‘ 𝑈 ) ∈ 𝐵 ) |
| 68 | 34 17 64 65 67 | mulgnn0cld | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ∈ 𝐵 ) |
| 69 | 68 | ad4ant13 | ⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐴 ‘ 𝑗 ) = ( 0g ‘ 𝑈 ) ) → ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ∈ 𝐵 ) |
| 70 | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) | |
| 71 | 5 45 15 70 21 | lmod0vs | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ∈ 𝐵 ) → ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) = ( 0g ‘ 𝑊 ) ) |
| 72 | 62 69 71 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐴 ‘ 𝑗 ) = ( 0g ‘ 𝑈 ) ) → ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) = ( 0g ‘ 𝑊 ) ) |
| 73 | 61 72 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐴 ‘ 𝑗 ) = ( 0g ‘ 𝑈 ) ) → ( ( 𝐴 ‘ 𝑗 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) = ( 0g ‘ 𝑊 ) ) |
| 74 | 73 | ex | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑗 ) = ( 0g ‘ 𝑈 ) → ( ( 𝐴 ‘ 𝑗 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) = ( 0g ‘ 𝑊 ) ) ) |
| 75 | 74 | imim2d | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑖 < 𝑗 → ( 𝐴 ‘ 𝑗 ) = ( 0g ‘ 𝑈 ) ) → ( 𝑖 < 𝑗 → ( ( 𝐴 ‘ 𝑗 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) = ( 0g ‘ 𝑊 ) ) ) ) |
| 76 | 75 | ralimdva | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ∀ 𝑗 ∈ ℕ0 ( 𝑖 < 𝑗 → ( 𝐴 ‘ 𝑗 ) = ( 0g ‘ 𝑈 ) ) → ∀ 𝑗 ∈ ℕ0 ( 𝑖 < 𝑗 → ( ( 𝐴 ‘ 𝑗 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) = ( 0g ‘ 𝑊 ) ) ) ) |
| 77 | 76 | reximdva | ⊢ ( 𝜑 → ( ∃ 𝑖 ∈ ℕ0 ∀ 𝑗 ∈ ℕ0 ( 𝑖 < 𝑗 → ( 𝐴 ‘ 𝑗 ) = ( 0g ‘ 𝑈 ) ) → ∃ 𝑖 ∈ ℕ0 ∀ 𝑗 ∈ ℕ0 ( 𝑖 < 𝑗 → ( ( 𝐴 ‘ 𝑗 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) = ( 0g ‘ 𝑊 ) ) ) ) |
| 78 | 56 77 | mpd | ⊢ ( 𝜑 → ∃ 𝑖 ∈ ℕ0 ∀ 𝑗 ∈ ℕ0 ( 𝑖 < 𝑗 → ( ( 𝐴 ‘ 𝑗 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) = ( 0g ‘ 𝑊 ) ) ) |
| 79 | 50 48 53 78 | mptnn0fsuppd | ⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) ) finSupp ( 0g ‘ 𝑊 ) ) |
| 80 | 1 2 3 21 4 22 5 6 7 48 49 79 | evls1gsumadd | ⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝑊 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) ) ) ) = ( ( 𝑆 ↑s 𝐾 ) Σg ( 𝑘 ∈ ℕ0 ↦ ( 𝑄 ‘ ( ( 𝐴 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) ) ) ) ) |
| 81 | 1 2 22 4 3 | evls1rhm | ⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑄 ∈ ( 𝑊 RingHom ( 𝑆 ↑s 𝐾 ) ) ) |
| 82 | 6 7 81 | syl2anc | ⊢ ( 𝜑 → 𝑄 ∈ ( 𝑊 RingHom ( 𝑆 ↑s 𝐾 ) ) ) |
| 83 | 82 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑄 ∈ ( 𝑊 RingHom ( 𝑆 ↑s 𝐾 ) ) ) |
| 84 | eqid | ⊢ ( algSc ‘ 𝑊 ) = ( algSc ‘ 𝑊 ) | |
| 85 | 84 45 36 24 46 5 | asclf | ⊢ ( 𝜑 → ( algSc ‘ 𝑊 ) : ( Base ‘ ( Scalar ‘ 𝑊 ) ) ⟶ 𝐵 ) |
| 86 | 85 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( algSc ‘ 𝑊 ) : ( Base ‘ ( Scalar ‘ 𝑊 ) ) ⟶ 𝐵 ) |
| 87 | 86 33 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( algSc ‘ 𝑊 ) ‘ ( 𝐴 ‘ 𝑘 ) ) ∈ 𝐵 ) |
| 88 | eqid | ⊢ ( .r ‘ 𝑊 ) = ( .r ‘ 𝑊 ) | |
| 89 | eqid | ⊢ ( .r ‘ ( 𝑆 ↑s 𝐾 ) ) = ( .r ‘ ( 𝑆 ↑s 𝐾 ) ) | |
| 90 | 5 88 89 | rhmmul | ⊢ ( ( 𝑄 ∈ ( 𝑊 RingHom ( 𝑆 ↑s 𝐾 ) ) ∧ ( ( algSc ‘ 𝑊 ) ‘ ( 𝐴 ‘ 𝑘 ) ) ∈ 𝐵 ∧ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ∈ 𝐵 ) → ( 𝑄 ‘ ( ( ( algSc ‘ 𝑊 ) ‘ ( 𝐴 ‘ 𝑘 ) ) ( .r ‘ 𝑊 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) ) = ( ( 𝑄 ‘ ( ( algSc ‘ 𝑊 ) ‘ ( 𝐴 ‘ 𝑘 ) ) ) ( .r ‘ ( 𝑆 ↑s 𝐾 ) ) ( 𝑄 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) ) ) |
| 91 | 83 87 44 90 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑄 ‘ ( ( ( algSc ‘ 𝑊 ) ‘ ( 𝐴 ‘ 𝑘 ) ) ( .r ‘ 𝑊 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) ) = ( ( 𝑄 ‘ ( ( algSc ‘ 𝑊 ) ‘ ( 𝐴 ‘ 𝑘 ) ) ) ( .r ‘ ( 𝑆 ↑s 𝐾 ) ) ( 𝑄 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) ) ) |
| 92 | 4 | subrgcrng | ⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑈 ∈ CRing ) |
| 93 | 6 7 92 | syl2anc | ⊢ ( 𝜑 → 𝑈 ∈ CRing ) |
| 94 | 3 | ply1assa | ⊢ ( 𝑈 ∈ CRing → 𝑊 ∈ AssAlg ) |
| 95 | 93 94 | syl | ⊢ ( 𝜑 → 𝑊 ∈ AssAlg ) |
| 96 | 95 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑊 ∈ AssAlg ) |
| 97 | 84 45 46 5 88 15 | asclmul1 | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ‘ 𝑘 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ∈ 𝐵 ) → ( ( ( algSc ‘ 𝑊 ) ‘ ( 𝐴 ‘ 𝑘 ) ) ( .r ‘ 𝑊 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) = ( ( 𝐴 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) ) |
| 98 | 96 33 44 97 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( algSc ‘ 𝑊 ) ‘ ( 𝐴 ‘ 𝑘 ) ) ( .r ‘ 𝑊 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) = ( ( 𝐴 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) ) |
| 99 | 98 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑄 ‘ ( ( ( algSc ‘ 𝑊 ) ‘ ( 𝐴 ‘ 𝑘 ) ) ( .r ‘ 𝑊 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) ) = ( 𝑄 ‘ ( ( 𝐴 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) ) ) |
| 100 | eqid | ⊢ ( Base ‘ ( 𝑆 ↑s 𝐾 ) ) = ( Base ‘ ( 𝑆 ↑s 𝐾 ) ) | |
| 101 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑆 ∈ CRing ) |
| 102 | 2 | fvexi | ⊢ 𝐾 ∈ V |
| 103 | 102 | a1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝐾 ∈ V ) |
| 104 | 5 100 | rhmf | ⊢ ( 𝑄 ∈ ( 𝑊 RingHom ( 𝑆 ↑s 𝐾 ) ) → 𝑄 : 𝐵 ⟶ ( Base ‘ ( 𝑆 ↑s 𝐾 ) ) ) |
| 105 | 83 104 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑄 : 𝐵 ⟶ ( Base ‘ ( 𝑆 ↑s 𝐾 ) ) ) |
| 106 | 105 87 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑄 ‘ ( ( algSc ‘ 𝑊 ) ‘ ( 𝐴 ‘ 𝑘 ) ) ) ∈ ( Base ‘ ( 𝑆 ↑s 𝐾 ) ) ) |
| 107 | 105 44 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑄 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) ∈ ( Base ‘ ( 𝑆 ↑s 𝐾 ) ) ) |
| 108 | 22 100 101 103 106 107 9 89 | pwsmulrval | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑄 ‘ ( ( algSc ‘ 𝑊 ) ‘ ( 𝐴 ‘ 𝑘 ) ) ) ( .r ‘ ( 𝑆 ↑s 𝐾 ) ) ( 𝑄 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) ) = ( ( 𝑄 ‘ ( ( algSc ‘ 𝑊 ) ‘ ( 𝐴 ‘ 𝑘 ) ) ) ∘f · ( 𝑄 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) ) ) |
| 109 | 22 2 100 101 103 106 | pwselbas | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑄 ‘ ( ( algSc ‘ 𝑊 ) ‘ ( 𝐴 ‘ 𝑘 ) ) ) : 𝐾 ⟶ 𝐾 ) |
| 110 | 109 | ffnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑄 ‘ ( ( algSc ‘ 𝑊 ) ‘ ( 𝐴 ‘ 𝑘 ) ) ) Fn 𝐾 ) |
| 111 | 22 2 100 101 103 107 | pwselbas | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑄 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) : 𝐾 ⟶ 𝐾 ) |
| 112 | 111 | ffnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑄 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) Fn 𝐾 ) |
| 113 | inidm | ⊢ ( 𝐾 ∩ 𝐾 ) = 𝐾 | |
| 114 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐾 ) → 𝑆 ∈ CRing ) |
| 115 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐾 ) → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) |
| 116 | 2 | subrgss | ⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 ⊆ 𝐾 ) |
| 117 | 7 116 | syl | ⊢ ( 𝜑 → 𝑅 ⊆ 𝐾 ) |
| 118 | 4 2 | ressbas2 | ⊢ ( 𝑅 ⊆ 𝐾 → 𝑅 = ( Base ‘ 𝑈 ) ) |
| 119 | 117 118 | syl | ⊢ ( 𝜑 → 𝑅 = ( Base ‘ 𝑈 ) ) |
| 120 | 119 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑅 = ( Base ‘ 𝑈 ) ) |
| 121 | 28 120 | eleqtrrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑘 ) ∈ 𝑅 ) |
| 122 | 121 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐾 ) → ( 𝐴 ‘ 𝑘 ) ∈ 𝑅 ) |
| 123 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐾 ) → 𝑥 ∈ 𝐾 ) | |
| 124 | 1 3 4 2 84 114 115 122 123 | evls1scafv | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐾 ) → ( ( 𝑄 ‘ ( ( algSc ‘ 𝑊 ) ‘ ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑥 ) = ( 𝐴 ‘ 𝑘 ) ) |
| 125 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐾 ) → 𝑘 ∈ ℕ0 ) | |
| 126 | 1 4 3 14 2 17 10 114 115 125 123 | evls1varpwval | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐾 ) → ( ( 𝑄 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) ‘ 𝑥 ) = ( 𝑘 ↑ 𝑥 ) ) |
| 127 | 110 112 103 103 113 124 126 | offval | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑄 ‘ ( ( algSc ‘ 𝑊 ) ‘ ( 𝐴 ‘ 𝑘 ) ) ) ∘f · ( 𝑄 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) ) = ( 𝑥 ∈ 𝐾 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ) ) |
| 128 | 108 127 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑄 ‘ ( ( algSc ‘ 𝑊 ) ‘ ( 𝐴 ‘ 𝑘 ) ) ) ( .r ‘ ( 𝑆 ↑s 𝐾 ) ) ( 𝑄 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) ) = ( 𝑥 ∈ 𝐾 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ) ) |
| 129 | 91 99 128 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑄 ‘ ( ( 𝐴 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) ) = ( 𝑥 ∈ 𝐾 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ) ) |
| 130 | 129 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ ( 𝑄 ‘ ( ( 𝐴 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( 𝑥 ∈ 𝐾 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ) ) ) |
| 131 | 130 | oveq2d | ⊢ ( 𝜑 → ( ( 𝑆 ↑s 𝐾 ) Σg ( 𝑘 ∈ ℕ0 ↦ ( 𝑄 ‘ ( ( 𝐴 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) ) ) ) = ( ( 𝑆 ↑s 𝐾 ) Σg ( 𝑘 ∈ ℕ0 ↦ ( 𝑥 ∈ 𝐾 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ) ) ) ) |
| 132 | eqid | ⊢ ( 0g ‘ ( 𝑆 ↑s 𝐾 ) ) = ( 0g ‘ ( 𝑆 ↑s 𝐾 ) ) | |
| 133 | 102 | a1i | ⊢ ( 𝜑 → 𝐾 ∈ V ) |
| 134 | nn0ex | ⊢ ℕ0 ∈ V | |
| 135 | 134 | a1i | ⊢ ( 𝜑 → ℕ0 ∈ V ) |
| 136 | 6 | crngringd | ⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
| 137 | 136 | ringcmnd | ⊢ ( 𝜑 → 𝑆 ∈ CMnd ) |
| 138 | 136 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐾 ) → 𝑆 ∈ Ring ) |
| 139 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) |
| 140 | 139 116 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑅 ⊆ 𝐾 ) |
| 141 | 140 121 | sseldd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑘 ) ∈ 𝐾 ) |
| 142 | 141 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐾 ) → ( 𝐴 ‘ 𝑘 ) ∈ 𝐾 ) |
| 143 | eqid | ⊢ ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 ) | |
| 144 | 143 2 | mgpbas | ⊢ 𝐾 = ( Base ‘ ( mulGrp ‘ 𝑆 ) ) |
| 145 | 143 | ringmgp | ⊢ ( 𝑆 ∈ Ring → ( mulGrp ‘ 𝑆 ) ∈ Mnd ) |
| 146 | 136 145 | syl | ⊢ ( 𝜑 → ( mulGrp ‘ 𝑆 ) ∈ Mnd ) |
| 147 | 146 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐾 ) → ( mulGrp ‘ 𝑆 ) ∈ Mnd ) |
| 148 | 144 10 147 125 123 | mulgnn0cld | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐾 ) → ( 𝑘 ↑ 𝑥 ) ∈ 𝐾 ) |
| 149 | 2 9 138 142 148 | ringcld | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐾 ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ∈ 𝐾 ) |
| 150 | 149 | 3impa | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ∧ 𝑥 ∈ 𝐾 ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ∈ 𝐾 ) |
| 151 | 150 | 3com23 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ∈ 𝐾 ) |
| 152 | 151 | 3expb | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑘 ∈ ℕ0 ) ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ∈ 𝐾 ) |
| 153 | 135 | mptexd | ⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ ( 𝑥 ∈ 𝐾 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ) ) ∈ V ) |
| 154 | funmpt | ⊢ Fun ( 𝑘 ∈ ℕ0 ↦ ( 𝑥 ∈ 𝐾 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ) ) | |
| 155 | 154 | a1i | ⊢ ( 𝜑 → Fun ( 𝑘 ∈ ℕ0 ↦ ( 𝑥 ∈ 𝐾 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ) ) ) |
| 156 | fvexd | ⊢ ( 𝜑 → ( 0g ‘ ( 𝑆 ↑s 𝐾 ) ) ∈ V ) | |
| 157 | 11 5 3 54 | coe1sfi | ⊢ ( 𝑀 ∈ 𝐵 → 𝐴 finSupp ( 0g ‘ 𝑈 ) ) |
| 158 | 8 157 | syl | ⊢ ( 𝜑 → 𝐴 finSupp ( 0g ‘ 𝑈 ) ) |
| 159 | 158 | fsuppimpd | ⊢ ( 𝜑 → ( 𝐴 supp ( 0g ‘ 𝑈 ) ) ∈ Fin ) |
| 160 | 11 5 3 26 | coe1f | ⊢ ( 𝑀 ∈ 𝐵 → 𝐴 : ℕ0 ⟶ ( Base ‘ 𝑈 ) ) |
| 161 | 8 160 | syl | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ( Base ‘ 𝑈 ) ) |
| 162 | 161 | ffnd | ⊢ ( 𝜑 → 𝐴 Fn ℕ0 ) |
| 163 | 162 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 𝐴 supp ( 0g ‘ 𝑈 ) ) ) ) → 𝐴 Fn ℕ0 ) |
| 164 | 134 | a1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 𝐴 supp ( 0g ‘ 𝑈 ) ) ) ) → ℕ0 ∈ V ) |
| 165 | fvexd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 𝐴 supp ( 0g ‘ 𝑈 ) ) ) ) → ( 0g ‘ 𝑈 ) ∈ V ) | |
| 166 | simpr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 𝐴 supp ( 0g ‘ 𝑈 ) ) ) ) → 𝑘 ∈ ( ℕ0 ∖ ( 𝐴 supp ( 0g ‘ 𝑈 ) ) ) ) | |
| 167 | 163 164 165 166 | fvdifsupp | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 𝐴 supp ( 0g ‘ 𝑈 ) ) ) ) → ( 𝐴 ‘ 𝑘 ) = ( 0g ‘ 𝑈 ) ) |
| 168 | eqid | ⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) | |
| 169 | 4 168 | subrg0 | ⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑈 ) ) |
| 170 | 7 169 | syl | ⊢ ( 𝜑 → ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑈 ) ) |
| 171 | 170 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 𝐴 supp ( 0g ‘ 𝑈 ) ) ) ) → ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑈 ) ) |
| 172 | 167 171 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 𝐴 supp ( 0g ‘ 𝑈 ) ) ) ) → ( 𝐴 ‘ 𝑘 ) = ( 0g ‘ 𝑆 ) ) |
| 173 | 172 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 𝐴 supp ( 0g ‘ 𝑈 ) ) ) ) ∧ 𝑥 ∈ 𝐾 ) → ( 𝐴 ‘ 𝑘 ) = ( 0g ‘ 𝑆 ) ) |
| 174 | 173 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 𝐴 supp ( 0g ‘ 𝑈 ) ) ) ) ∧ 𝑥 ∈ 𝐾 ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) = ( ( 0g ‘ 𝑆 ) · ( 𝑘 ↑ 𝑥 ) ) ) |
| 175 | 136 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 𝐴 supp ( 0g ‘ 𝑈 ) ) ) ) ∧ 𝑥 ∈ 𝐾 ) → 𝑆 ∈ Ring ) |
| 176 | 175 145 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 𝐴 supp ( 0g ‘ 𝑈 ) ) ) ) ∧ 𝑥 ∈ 𝐾 ) → ( mulGrp ‘ 𝑆 ) ∈ Mnd ) |
| 177 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 𝐴 supp ( 0g ‘ 𝑈 ) ) ) ) ∧ 𝑥 ∈ 𝐾 ) → 𝑘 ∈ ( ℕ0 ∖ ( 𝐴 supp ( 0g ‘ 𝑈 ) ) ) ) | |
| 178 | 177 | eldifad | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 𝐴 supp ( 0g ‘ 𝑈 ) ) ) ) ∧ 𝑥 ∈ 𝐾 ) → 𝑘 ∈ ℕ0 ) |
| 179 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 𝐴 supp ( 0g ‘ 𝑈 ) ) ) ) ∧ 𝑥 ∈ 𝐾 ) → 𝑥 ∈ 𝐾 ) | |
| 180 | 144 10 176 178 179 | mulgnn0cld | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 𝐴 supp ( 0g ‘ 𝑈 ) ) ) ) ∧ 𝑥 ∈ 𝐾 ) → ( 𝑘 ↑ 𝑥 ) ∈ 𝐾 ) |
| 181 | 2 9 168 | ringlz | ⊢ ( ( 𝑆 ∈ Ring ∧ ( 𝑘 ↑ 𝑥 ) ∈ 𝐾 ) → ( ( 0g ‘ 𝑆 ) · ( 𝑘 ↑ 𝑥 ) ) = ( 0g ‘ 𝑆 ) ) |
| 182 | 175 180 181 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 𝐴 supp ( 0g ‘ 𝑈 ) ) ) ) ∧ 𝑥 ∈ 𝐾 ) → ( ( 0g ‘ 𝑆 ) · ( 𝑘 ↑ 𝑥 ) ) = ( 0g ‘ 𝑆 ) ) |
| 183 | 174 182 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 𝐴 supp ( 0g ‘ 𝑈 ) ) ) ) ∧ 𝑥 ∈ 𝐾 ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) = ( 0g ‘ 𝑆 ) ) |
| 184 | 183 | mpteq2dva | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 𝐴 supp ( 0g ‘ 𝑈 ) ) ) ) → ( 𝑥 ∈ 𝐾 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐾 ↦ ( 0g ‘ 𝑆 ) ) ) |
| 185 | fconstmpt | ⊢ ( 𝐾 × { ( 0g ‘ 𝑆 ) } ) = ( 𝑥 ∈ 𝐾 ↦ ( 0g ‘ 𝑆 ) ) | |
| 186 | 184 185 | eqtr4di | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 𝐴 supp ( 0g ‘ 𝑈 ) ) ) ) → ( 𝑥 ∈ 𝐾 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ) = ( 𝐾 × { ( 0g ‘ 𝑆 ) } ) ) |
| 187 | 137 | cmnmndd | ⊢ ( 𝜑 → 𝑆 ∈ Mnd ) |
| 188 | 22 168 | pws0g | ⊢ ( ( 𝑆 ∈ Mnd ∧ 𝐾 ∈ V ) → ( 𝐾 × { ( 0g ‘ 𝑆 ) } ) = ( 0g ‘ ( 𝑆 ↑s 𝐾 ) ) ) |
| 189 | 187 133 188 | syl2anc | ⊢ ( 𝜑 → ( 𝐾 × { ( 0g ‘ 𝑆 ) } ) = ( 0g ‘ ( 𝑆 ↑s 𝐾 ) ) ) |
| 190 | 189 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 𝐴 supp ( 0g ‘ 𝑈 ) ) ) ) → ( 𝐾 × { ( 0g ‘ 𝑆 ) } ) = ( 0g ‘ ( 𝑆 ↑s 𝐾 ) ) ) |
| 191 | 186 190 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 𝐴 supp ( 0g ‘ 𝑈 ) ) ) ) → ( 𝑥 ∈ 𝐾 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ) = ( 0g ‘ ( 𝑆 ↑s 𝐾 ) ) ) |
| 192 | 191 135 | suppss2 | ⊢ ( 𝜑 → ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑥 ∈ 𝐾 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ) ) supp ( 0g ‘ ( 𝑆 ↑s 𝐾 ) ) ) ⊆ ( 𝐴 supp ( 0g ‘ 𝑈 ) ) ) |
| 193 | suppssfifsupp | ⊢ ( ( ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑥 ∈ 𝐾 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ ℕ0 ↦ ( 𝑥 ∈ 𝐾 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ) ) ∧ ( 0g ‘ ( 𝑆 ↑s 𝐾 ) ) ∈ V ) ∧ ( ( 𝐴 supp ( 0g ‘ 𝑈 ) ) ∈ Fin ∧ ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑥 ∈ 𝐾 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ) ) supp ( 0g ‘ ( 𝑆 ↑s 𝐾 ) ) ) ⊆ ( 𝐴 supp ( 0g ‘ 𝑈 ) ) ) ) → ( 𝑘 ∈ ℕ0 ↦ ( 𝑥 ∈ 𝐾 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ) ) finSupp ( 0g ‘ ( 𝑆 ↑s 𝐾 ) ) ) | |
| 194 | 153 155 156 159 192 193 | syl32anc | ⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ ( 𝑥 ∈ 𝐾 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ) ) finSupp ( 0g ‘ ( 𝑆 ↑s 𝐾 ) ) ) |
| 195 | 22 2 132 133 135 137 152 194 | pwsgsum | ⊢ ( 𝜑 → ( ( 𝑆 ↑s 𝐾 ) Σg ( 𝑘 ∈ ℕ0 ↦ ( 𝑥 ∈ 𝐾 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ) ) ) = ( 𝑥 ∈ 𝐾 ↦ ( 𝑆 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ) ) ) ) |
| 196 | 80 131 195 | 3eqtrd | ⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝑊 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) ) ) ) = ( 𝑥 ∈ 𝐾 ↦ ( 𝑆 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ) ) ) ) |
| 197 | 20 196 | eqtrd | ⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) = ( 𝑥 ∈ 𝐾 ↦ ( 𝑆 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ) ) ) ) |