This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ring of univariate polynomials is an associative algebra. (Contributed by Mario Carneiro, 9-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ply1val.1 | |- P = ( Poly1 ` R ) |
|
| Assertion | ply1assa | |- ( R e. CRing -> P e. AssAlg ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1val.1 | |- P = ( Poly1 ` R ) |
|
| 2 | crngring | |- ( R e. CRing -> R e. Ring ) |
|
| 3 | eqid | |- ( PwSer1 ` R ) = ( PwSer1 ` R ) |
|
| 4 | eqid | |- ( Base ` P ) = ( Base ` P ) |
|
| 5 | 1 3 4 | ply1subrg | |- ( R e. Ring -> ( Base ` P ) e. ( SubRing ` ( PwSer1 ` R ) ) ) |
| 6 | 2 5 | syl | |- ( R e. CRing -> ( Base ` P ) e. ( SubRing ` ( PwSer1 ` R ) ) ) |
| 7 | 1 3 4 | ply1lss | |- ( R e. Ring -> ( Base ` P ) e. ( LSubSp ` ( PwSer1 ` R ) ) ) |
| 8 | 2 7 | syl | |- ( R e. CRing -> ( Base ` P ) e. ( LSubSp ` ( PwSer1 ` R ) ) ) |
| 9 | 3 | psr1assa | |- ( R e. CRing -> ( PwSer1 ` R ) e. AssAlg ) |
| 10 | eqid | |- ( 1r ` ( PwSer1 ` R ) ) = ( 1r ` ( PwSer1 ` R ) ) |
|
| 11 | 10 | subrg1cl | |- ( ( Base ` P ) e. ( SubRing ` ( PwSer1 ` R ) ) -> ( 1r ` ( PwSer1 ` R ) ) e. ( Base ` P ) ) |
| 12 | 6 11 | syl | |- ( R e. CRing -> ( 1r ` ( PwSer1 ` R ) ) e. ( Base ` P ) ) |
| 13 | eqid | |- ( Base ` ( PwSer1 ` R ) ) = ( Base ` ( PwSer1 ` R ) ) |
|
| 14 | 13 | subrgss | |- ( ( Base ` P ) e. ( SubRing ` ( PwSer1 ` R ) ) -> ( Base ` P ) C_ ( Base ` ( PwSer1 ` R ) ) ) |
| 15 | 6 14 | syl | |- ( R e. CRing -> ( Base ` P ) C_ ( Base ` ( PwSer1 ` R ) ) ) |
| 16 | 1 3 | ply1val | |- P = ( ( PwSer1 ` R ) |`s ( Base ` ( 1o mPoly R ) ) ) |
| 17 | 1 4 | ply1bas | |- ( Base ` P ) = ( Base ` ( 1o mPoly R ) ) |
| 18 | 17 | oveq2i | |- ( ( PwSer1 ` R ) |`s ( Base ` P ) ) = ( ( PwSer1 ` R ) |`s ( Base ` ( 1o mPoly R ) ) ) |
| 19 | 16 18 | eqtr4i | |- P = ( ( PwSer1 ` R ) |`s ( Base ` P ) ) |
| 20 | eqid | |- ( LSubSp ` ( PwSer1 ` R ) ) = ( LSubSp ` ( PwSer1 ` R ) ) |
|
| 21 | 19 20 13 10 | issubassa | |- ( ( ( PwSer1 ` R ) e. AssAlg /\ ( 1r ` ( PwSer1 ` R ) ) e. ( Base ` P ) /\ ( Base ` P ) C_ ( Base ` ( PwSer1 ` R ) ) ) -> ( P e. AssAlg <-> ( ( Base ` P ) e. ( SubRing ` ( PwSer1 ` R ) ) /\ ( Base ` P ) e. ( LSubSp ` ( PwSer1 ` R ) ) ) ) ) |
| 22 | 9 12 15 21 | syl3anc | |- ( R e. CRing -> ( P e. AssAlg <-> ( ( Base ` P ) e. ( SubRing ` ( PwSer1 ` R ) ) /\ ( Base ` P ) e. ( LSubSp ` ( PwSer1 ` R ) ) ) ) ) |
| 23 | 6 8 22 | mpbir2and | |- ( R e. CRing -> P e. AssAlg ) |