This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A mapping from the nonnegative integers is finitely supported under certain conditions. (Contributed by AV, 2-Dec-2019) (Revised by AV, 23-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mptnn0fsupp.0 | |- ( ph -> .0. e. V ) |
|
| mptnn0fsupp.c | |- ( ( ph /\ k e. NN0 ) -> C e. B ) |
||
| mptnn0fsuppd.d | |- ( k = x -> C = D ) |
||
| mptnn0fsuppd.s | |- ( ph -> E. s e. NN0 A. x e. NN0 ( s < x -> D = .0. ) ) |
||
| Assertion | mptnn0fsuppd | |- ( ph -> ( k e. NN0 |-> C ) finSupp .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptnn0fsupp.0 | |- ( ph -> .0. e. V ) |
|
| 2 | mptnn0fsupp.c | |- ( ( ph /\ k e. NN0 ) -> C e. B ) |
|
| 3 | mptnn0fsuppd.d | |- ( k = x -> C = D ) |
|
| 4 | mptnn0fsuppd.s | |- ( ph -> E. s e. NN0 A. x e. NN0 ( s < x -> D = .0. ) ) |
|
| 5 | vex | |- x e. _V |
|
| 6 | 5 3 | csbie | |- [_ x / k ]_ C = D |
| 7 | id | |- ( D = .0. -> D = .0. ) |
|
| 8 | 6 7 | eqtrid | |- ( D = .0. -> [_ x / k ]_ C = .0. ) |
| 9 | 8 | imim2i | |- ( ( s < x -> D = .0. ) -> ( s < x -> [_ x / k ]_ C = .0. ) ) |
| 10 | 9 | ralimi | |- ( A. x e. NN0 ( s < x -> D = .0. ) -> A. x e. NN0 ( s < x -> [_ x / k ]_ C = .0. ) ) |
| 11 | 10 | reximi | |- ( E. s e. NN0 A. x e. NN0 ( s < x -> D = .0. ) -> E. s e. NN0 A. x e. NN0 ( s < x -> [_ x / k ]_ C = .0. ) ) |
| 12 | 4 11 | syl | |- ( ph -> E. s e. NN0 A. x e. NN0 ( s < x -> [_ x / k ]_ C = .0. ) ) |
| 13 | 1 2 12 | mptnn0fsupp | |- ( ph -> ( k e. NN0 |-> C ) finSupp .0. ) |