This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A homomorphism of rings preserves multiplication. (Contributed by Mario Carneiro, 12-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rhmmul.x | |- X = ( Base ` R ) |
|
| rhmmul.m | |- .x. = ( .r ` R ) |
||
| rhmmul.n | |- .X. = ( .r ` S ) |
||
| Assertion | rhmmul | |- ( ( F e. ( R RingHom S ) /\ A e. X /\ B e. X ) -> ( F ` ( A .x. B ) ) = ( ( F ` A ) .X. ( F ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmmul.x | |- X = ( Base ` R ) |
|
| 2 | rhmmul.m | |- .x. = ( .r ` R ) |
|
| 3 | rhmmul.n | |- .X. = ( .r ` S ) |
|
| 4 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 5 | eqid | |- ( mulGrp ` S ) = ( mulGrp ` S ) |
|
| 6 | 4 5 | rhmmhm | |- ( F e. ( R RingHom S ) -> F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) |
| 7 | 4 1 | mgpbas | |- X = ( Base ` ( mulGrp ` R ) ) |
| 8 | 4 2 | mgpplusg | |- .x. = ( +g ` ( mulGrp ` R ) ) |
| 9 | 5 3 | mgpplusg | |- .X. = ( +g ` ( mulGrp ` S ) ) |
| 10 | 7 8 9 | mhmlin | |- ( ( F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) /\ A e. X /\ B e. X ) -> ( F ` ( A .x. B ) ) = ( ( F ` A ) .X. ( F ` B ) ) ) |
| 11 | 6 10 | syl3an1 | |- ( ( F e. ( R RingHom S ) /\ A e. X /\ B e. X ) -> ( F ` ( A .x. B ) ) = ( ( F ` A ) .X. ( F ` B ) ) ) |