This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scalars of a univariate polynomial ring. (Contributed by Stefan O'Rear, 26-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ply1lmod.p | |- P = ( Poly1 ` R ) |
|
| Assertion | ply1sca | |- ( R e. V -> R = ( Scalar ` P ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1lmod.p | |- P = ( Poly1 ` R ) |
|
| 2 | eqid | |- ( PwSer1 ` R ) = ( PwSer1 ` R ) |
|
| 3 | 2 | psr1sca | |- ( R e. V -> R = ( Scalar ` ( PwSer1 ` R ) ) ) |
| 4 | fvex | |- ( Base ` ( 1o mPoly R ) ) e. _V |
|
| 5 | 1 2 | ply1val | |- P = ( ( PwSer1 ` R ) |`s ( Base ` ( 1o mPoly R ) ) ) |
| 6 | eqid | |- ( Scalar ` ( PwSer1 ` R ) ) = ( Scalar ` ( PwSer1 ` R ) ) |
|
| 7 | 5 6 | resssca | |- ( ( Base ` ( 1o mPoly R ) ) e. _V -> ( Scalar ` ( PwSer1 ` R ) ) = ( Scalar ` P ) ) |
| 8 | 4 7 | ax-mp | |- ( Scalar ` ( PwSer1 ` R ) ) = ( Scalar ` P ) |
| 9 | 3 8 | eqtrdi | |- ( R e. V -> R = ( Scalar ` P ) ) |