This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Univariate polynomials form a ring. (Contributed by Stefan O'Rear, 22-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ply1ring.p | |- P = ( Poly1 ` R ) |
|
| Assertion | ply1ring | |- ( R e. Ring -> P e. Ring ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1ring.p | |- P = ( Poly1 ` R ) |
|
| 2 | eqid | |- ( Base ` P ) = ( Base ` P ) |
|
| 3 | 1 2 | ply1bas | |- ( Base ` P ) = ( Base ` ( 1o mPoly R ) ) |
| 4 | eqid | |- ( PwSer1 ` R ) = ( PwSer1 ` R ) |
|
| 5 | 1 4 2 | ply1subrg | |- ( R e. Ring -> ( Base ` P ) e. ( SubRing ` ( PwSer1 ` R ) ) ) |
| 6 | 3 5 | eqeltrrid | |- ( R e. Ring -> ( Base ` ( 1o mPoly R ) ) e. ( SubRing ` ( PwSer1 ` R ) ) ) |
| 7 | 1 4 | ply1val | |- P = ( ( PwSer1 ` R ) |`s ( Base ` ( 1o mPoly R ) ) ) |
| 8 | 7 | subrgring | |- ( ( Base ` ( 1o mPoly R ) ) e. ( SubRing ` ( PwSer1 ` R ) ) -> P e. Ring ) |
| 9 | 6 8 | syl | |- ( R e. Ring -> P e. Ring ) |