This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Univariate polynomial evaluation maps (additive) group sums to group sums. (Contributed by AV, 14-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evls1gsumadd.q | |- Q = ( S evalSub1 R ) |
|
| evls1gsumadd.k | |- K = ( Base ` S ) |
||
| evls1gsumadd.w | |- W = ( Poly1 ` U ) |
||
| evls1gsumadd.0 | |- .0. = ( 0g ` W ) |
||
| evls1gsumadd.u | |- U = ( S |`s R ) |
||
| evls1gsumadd.p | |- P = ( S ^s K ) |
||
| evls1gsumadd.b | |- B = ( Base ` W ) |
||
| evls1gsumadd.s | |- ( ph -> S e. CRing ) |
||
| evls1gsumadd.r | |- ( ph -> R e. ( SubRing ` S ) ) |
||
| evls1gsumadd.y | |- ( ( ph /\ x e. N ) -> Y e. B ) |
||
| evls1gsumadd.n | |- ( ph -> N C_ NN0 ) |
||
| evls1gsumadd.f | |- ( ph -> ( x e. N |-> Y ) finSupp .0. ) |
||
| Assertion | evls1gsumadd | |- ( ph -> ( Q ` ( W gsum ( x e. N |-> Y ) ) ) = ( P gsum ( x e. N |-> ( Q ` Y ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evls1gsumadd.q | |- Q = ( S evalSub1 R ) |
|
| 2 | evls1gsumadd.k | |- K = ( Base ` S ) |
|
| 3 | evls1gsumadd.w | |- W = ( Poly1 ` U ) |
|
| 4 | evls1gsumadd.0 | |- .0. = ( 0g ` W ) |
|
| 5 | evls1gsumadd.u | |- U = ( S |`s R ) |
|
| 6 | evls1gsumadd.p | |- P = ( S ^s K ) |
|
| 7 | evls1gsumadd.b | |- B = ( Base ` W ) |
|
| 8 | evls1gsumadd.s | |- ( ph -> S e. CRing ) |
|
| 9 | evls1gsumadd.r | |- ( ph -> R e. ( SubRing ` S ) ) |
|
| 10 | evls1gsumadd.y | |- ( ( ph /\ x e. N ) -> Y e. B ) |
|
| 11 | evls1gsumadd.n | |- ( ph -> N C_ NN0 ) |
|
| 12 | evls1gsumadd.f | |- ( ph -> ( x e. N |-> Y ) finSupp .0. ) |
|
| 13 | 5 | subrgring | |- ( R e. ( SubRing ` S ) -> U e. Ring ) |
| 14 | 3 | ply1ring | |- ( U e. Ring -> W e. Ring ) |
| 15 | ringcmn | |- ( W e. Ring -> W e. CMnd ) |
|
| 16 | 9 13 14 15 | 4syl | |- ( ph -> W e. CMnd ) |
| 17 | crngring | |- ( S e. CRing -> S e. Ring ) |
|
| 18 | 8 17 | syl | |- ( ph -> S e. Ring ) |
| 19 | 2 | fvexi | |- K e. _V |
| 20 | 18 19 | jctir | |- ( ph -> ( S e. Ring /\ K e. _V ) ) |
| 21 | 6 | pwsring | |- ( ( S e. Ring /\ K e. _V ) -> P e. Ring ) |
| 22 | ringmnd | |- ( P e. Ring -> P e. Mnd ) |
|
| 23 | 20 21 22 | 3syl | |- ( ph -> P e. Mnd ) |
| 24 | nn0ex | |- NN0 e. _V |
|
| 25 | 24 | a1i | |- ( ph -> NN0 e. _V ) |
| 26 | 25 11 | ssexd | |- ( ph -> N e. _V ) |
| 27 | 1 2 6 5 3 | evls1rhm | |- ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> Q e. ( W RingHom P ) ) |
| 28 | 8 9 27 | syl2anc | |- ( ph -> Q e. ( W RingHom P ) ) |
| 29 | rhmghm | |- ( Q e. ( W RingHom P ) -> Q e. ( W GrpHom P ) ) |
|
| 30 | ghmmhm | |- ( Q e. ( W GrpHom P ) -> Q e. ( W MndHom P ) ) |
|
| 31 | 28 29 30 | 3syl | |- ( ph -> Q e. ( W MndHom P ) ) |
| 32 | 7 4 16 23 26 31 10 12 | gsummptmhm | |- ( ph -> ( P gsum ( x e. N |-> ( Q ` Y ) ) ) = ( Q ` ( W gsum ( x e. N |-> Y ) ) ) ) |
| 33 | 32 | eqcomd | |- ( ph -> ( Q ` ( W gsum ( x e. N |-> Y ) ) ) = ( P gsum ( x e. N |-> ( Q ` Y ) ) ) ) |