This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Univariate polynomial evaluation for subrings maps the exponentiation of a variable to the exponentiation of the evaluated variable. See evl1varpwval . (Contributed by Thierry Arnoux, 24-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evls1varpwval.q | |- Q = ( S evalSub1 R ) |
|
| evls1varpwval.u | |- U = ( S |`s R ) |
||
| evls1varpwval.w | |- W = ( Poly1 ` U ) |
||
| evls1varpwval.x | |- X = ( var1 ` U ) |
||
| evls1varpwval.b | |- B = ( Base ` S ) |
||
| evls1varpwval.e | |- ./\ = ( .g ` ( mulGrp ` W ) ) |
||
| evls1varpwval.f | |- .^ = ( .g ` ( mulGrp ` S ) ) |
||
| evls1varpwval.s | |- ( ph -> S e. CRing ) |
||
| evls1varpwval.r | |- ( ph -> R e. ( SubRing ` S ) ) |
||
| evls1varpwval.n | |- ( ph -> N e. NN0 ) |
||
| evls1varpwval.c | |- ( ph -> C e. B ) |
||
| Assertion | evls1varpwval | |- ( ph -> ( ( Q ` ( N ./\ X ) ) ` C ) = ( N .^ C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evls1varpwval.q | |- Q = ( S evalSub1 R ) |
|
| 2 | evls1varpwval.u | |- U = ( S |`s R ) |
|
| 3 | evls1varpwval.w | |- W = ( Poly1 ` U ) |
|
| 4 | evls1varpwval.x | |- X = ( var1 ` U ) |
|
| 5 | evls1varpwval.b | |- B = ( Base ` S ) |
|
| 6 | evls1varpwval.e | |- ./\ = ( .g ` ( mulGrp ` W ) ) |
|
| 7 | evls1varpwval.f | |- .^ = ( .g ` ( mulGrp ` S ) ) |
|
| 8 | evls1varpwval.s | |- ( ph -> S e. CRing ) |
|
| 9 | evls1varpwval.r | |- ( ph -> R e. ( SubRing ` S ) ) |
|
| 10 | evls1varpwval.n | |- ( ph -> N e. NN0 ) |
|
| 11 | evls1varpwval.c | |- ( ph -> C e. B ) |
|
| 12 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 13 | 2 | subrgring | |- ( R e. ( SubRing ` S ) -> U e. Ring ) |
| 14 | 4 3 12 | vr1cl | |- ( U e. Ring -> X e. ( Base ` W ) ) |
| 15 | 9 13 14 | 3syl | |- ( ph -> X e. ( Base ` W ) ) |
| 16 | 1 5 3 2 12 8 9 6 7 10 15 11 | evls1expd | |- ( ph -> ( ( Q ` ( N ./\ X ) ) ` C ) = ( N .^ ( ( Q ` X ) ` C ) ) ) |
| 17 | 1 4 2 5 8 9 | evls1var | |- ( ph -> ( Q ` X ) = ( _I |` B ) ) |
| 18 | 17 | fveq1d | |- ( ph -> ( ( Q ` X ) ` C ) = ( ( _I |` B ) ` C ) ) |
| 19 | fvresi | |- ( C e. B -> ( ( _I |` B ) ` C ) = C ) |
|
| 20 | 11 19 | syl | |- ( ph -> ( ( _I |` B ) ` C ) = C ) |
| 21 | 18 20 | eqtrd | |- ( ph -> ( ( Q ` X ) ` C ) = C ) |
| 22 | 21 | oveq2d | |- ( ph -> ( N .^ ( ( Q ` X ) ` C ) ) = ( N .^ C ) ) |
| 23 | 16 22 | eqtrd | |- ( ph -> ( ( Q ` ( N ./\ X ) ) ` C ) = ( N .^ C ) ) |