This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for psgnuni . Induction step for moving a transposition as far to the right as possible. (Contributed by Stefan O'Rear, 24-Aug-2015) (Revised by Mario Carneiro, 28-Feb-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgnunilem2.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) | |
| psgnunilem2.t | ⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) | ||
| psgnunilem2.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) | ||
| psgnunilem2.w | ⊢ ( 𝜑 → 𝑊 ∈ Word 𝑇 ) | ||
| psgnunilem2.id | ⊢ ( 𝜑 → ( 𝐺 Σg 𝑊 ) = ( I ↾ 𝐷 ) ) | ||
| psgnunilem2.l | ⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) = 𝐿 ) | ||
| psgnunilem2.ix | ⊢ ( 𝜑 → 𝐼 ∈ ( 0 ..^ 𝐿 ) ) | ||
| psgnunilem2.a | ⊢ ( 𝜑 → 𝐴 ∈ dom ( ( 𝑊 ‘ 𝐼 ) ∖ I ) ) | ||
| psgnunilem2.al | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ 𝐼 ) ¬ 𝐴 ∈ dom ( ( 𝑊 ‘ 𝑘 ) ∖ I ) ) | ||
| psgnunilem2.in | ⊢ ( 𝜑 → ¬ ∃ 𝑥 ∈ Word 𝑇 ( ( ♯ ‘ 𝑥 ) = ( 𝐿 − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) | ||
| Assertion | psgnunilem2 | ⊢ ( 𝜑 → ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∧ 𝐴 ∈ dom ( ( 𝑤 ‘ ( 𝐼 + 1 ) ) ∖ I ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ¬ 𝐴 ∈ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgnunilem2.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) | |
| 2 | psgnunilem2.t | ⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) | |
| 3 | psgnunilem2.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) | |
| 4 | psgnunilem2.w | ⊢ ( 𝜑 → 𝑊 ∈ Word 𝑇 ) | |
| 5 | psgnunilem2.id | ⊢ ( 𝜑 → ( 𝐺 Σg 𝑊 ) = ( I ↾ 𝐷 ) ) | |
| 6 | psgnunilem2.l | ⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) = 𝐿 ) | |
| 7 | psgnunilem2.ix | ⊢ ( 𝜑 → 𝐼 ∈ ( 0 ..^ 𝐿 ) ) | |
| 8 | psgnunilem2.a | ⊢ ( 𝜑 → 𝐴 ∈ dom ( ( 𝑊 ‘ 𝐼 ) ∖ I ) ) | |
| 9 | psgnunilem2.al | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ 𝐼 ) ¬ 𝐴 ∈ dom ( ( 𝑊 ‘ 𝑘 ) ∖ I ) ) | |
| 10 | psgnunilem2.in | ⊢ ( 𝜑 → ¬ ∃ 𝑥 ∈ Word 𝑇 ( ( ♯ ‘ 𝑥 ) = ( 𝐿 − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) | |
| 11 | wrd0 | ⊢ ∅ ∈ Word 𝑇 | |
| 12 | splcl | ⊢ ( ( 𝑊 ∈ Word 𝑇 ∧ ∅ ∈ Word 𝑇 ) → ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , ∅ 〉 ) ∈ Word 𝑇 ) | |
| 13 | 4 11 12 | sylancl | ⊢ ( 𝜑 → ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , ∅ 〉 ) ∈ Word 𝑇 ) |
| 14 | 13 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) → ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , ∅ 〉 ) ∈ Word 𝑇 ) |
| 15 | fzossfz | ⊢ ( 0 ..^ 𝐿 ) ⊆ ( 0 ... 𝐿 ) | |
| 16 | 15 7 | sselid | ⊢ ( 𝜑 → 𝐼 ∈ ( 0 ... 𝐿 ) ) |
| 17 | elfznn0 | ⊢ ( 𝐼 ∈ ( 0 ... 𝐿 ) → 𝐼 ∈ ℕ0 ) | |
| 18 | 16 17 | syl | ⊢ ( 𝜑 → 𝐼 ∈ ℕ0 ) |
| 19 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 20 | nn0addcl | ⊢ ( ( 𝐼 ∈ ℕ0 ∧ 2 ∈ ℕ0 ) → ( 𝐼 + 2 ) ∈ ℕ0 ) | |
| 21 | 18 19 20 | sylancl | ⊢ ( 𝜑 → ( 𝐼 + 2 ) ∈ ℕ0 ) |
| 22 | 18 | nn0red | ⊢ ( 𝜑 → 𝐼 ∈ ℝ ) |
| 23 | nn0addge1 | ⊢ ( ( 𝐼 ∈ ℝ ∧ 2 ∈ ℕ0 ) → 𝐼 ≤ ( 𝐼 + 2 ) ) | |
| 24 | 22 19 23 | sylancl | ⊢ ( 𝜑 → 𝐼 ≤ ( 𝐼 + 2 ) ) |
| 25 | elfz2nn0 | ⊢ ( 𝐼 ∈ ( 0 ... ( 𝐼 + 2 ) ) ↔ ( 𝐼 ∈ ℕ0 ∧ ( 𝐼 + 2 ) ∈ ℕ0 ∧ 𝐼 ≤ ( 𝐼 + 2 ) ) ) | |
| 26 | 18 21 24 25 | syl3anbrc | ⊢ ( 𝜑 → 𝐼 ∈ ( 0 ... ( 𝐼 + 2 ) ) ) |
| 27 | 1 2 3 4 5 6 7 8 9 | psgnunilem5 | ⊢ ( 𝜑 → ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) ) |
| 28 | fzofzp1 | ⊢ ( ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) → ( ( 𝐼 + 1 ) + 1 ) ∈ ( 0 ... 𝐿 ) ) | |
| 29 | 27 28 | syl | ⊢ ( 𝜑 → ( ( 𝐼 + 1 ) + 1 ) ∈ ( 0 ... 𝐿 ) ) |
| 30 | df-2 | ⊢ 2 = ( 1 + 1 ) | |
| 31 | 30 | oveq2i | ⊢ ( 𝐼 + 2 ) = ( 𝐼 + ( 1 + 1 ) ) |
| 32 | 18 | nn0cnd | ⊢ ( 𝜑 → 𝐼 ∈ ℂ ) |
| 33 | 1cnd | ⊢ ( 𝜑 → 1 ∈ ℂ ) | |
| 34 | 32 33 33 | addassd | ⊢ ( 𝜑 → ( ( 𝐼 + 1 ) + 1 ) = ( 𝐼 + ( 1 + 1 ) ) ) |
| 35 | 31 34 | eqtr4id | ⊢ ( 𝜑 → ( 𝐼 + 2 ) = ( ( 𝐼 + 1 ) + 1 ) ) |
| 36 | 6 | oveq2d | ⊢ ( 𝜑 → ( 0 ... ( ♯ ‘ 𝑊 ) ) = ( 0 ... 𝐿 ) ) |
| 37 | 29 35 36 | 3eltr4d | ⊢ ( 𝜑 → ( 𝐼 + 2 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
| 38 | 11 | a1i | ⊢ ( 𝜑 → ∅ ∈ Word 𝑇 ) |
| 39 | 4 26 37 38 | spllen | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , ∅ 〉 ) ) = ( ( ♯ ‘ 𝑊 ) + ( ( ♯ ‘ ∅ ) − ( ( 𝐼 + 2 ) − 𝐼 ) ) ) ) |
| 40 | hash0 | ⊢ ( ♯ ‘ ∅ ) = 0 | |
| 41 | 40 | oveq1i | ⊢ ( ( ♯ ‘ ∅ ) − ( ( 𝐼 + 2 ) − 𝐼 ) ) = ( 0 − ( ( 𝐼 + 2 ) − 𝐼 ) ) |
| 42 | df-neg | ⊢ - ( ( 𝐼 + 2 ) − 𝐼 ) = ( 0 − ( ( 𝐼 + 2 ) − 𝐼 ) ) | |
| 43 | 41 42 | eqtr4i | ⊢ ( ( ♯ ‘ ∅ ) − ( ( 𝐼 + 2 ) − 𝐼 ) ) = - ( ( 𝐼 + 2 ) − 𝐼 ) |
| 44 | 2cn | ⊢ 2 ∈ ℂ | |
| 45 | pncan2 | ⊢ ( ( 𝐼 ∈ ℂ ∧ 2 ∈ ℂ ) → ( ( 𝐼 + 2 ) − 𝐼 ) = 2 ) | |
| 46 | 32 44 45 | sylancl | ⊢ ( 𝜑 → ( ( 𝐼 + 2 ) − 𝐼 ) = 2 ) |
| 47 | 46 | negeqd | ⊢ ( 𝜑 → - ( ( 𝐼 + 2 ) − 𝐼 ) = - 2 ) |
| 48 | 43 47 | eqtrid | ⊢ ( 𝜑 → ( ( ♯ ‘ ∅ ) − ( ( 𝐼 + 2 ) − 𝐼 ) ) = - 2 ) |
| 49 | 6 48 | oveq12d | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝑊 ) + ( ( ♯ ‘ ∅ ) − ( ( 𝐼 + 2 ) − 𝐼 ) ) ) = ( 𝐿 + - 2 ) ) |
| 50 | elfzel2 | ⊢ ( 𝐼 ∈ ( 0 ... 𝐿 ) → 𝐿 ∈ ℤ ) | |
| 51 | 16 50 | syl | ⊢ ( 𝜑 → 𝐿 ∈ ℤ ) |
| 52 | 51 | zcnd | ⊢ ( 𝜑 → 𝐿 ∈ ℂ ) |
| 53 | negsub | ⊢ ( ( 𝐿 ∈ ℂ ∧ 2 ∈ ℂ ) → ( 𝐿 + - 2 ) = ( 𝐿 − 2 ) ) | |
| 54 | 52 44 53 | sylancl | ⊢ ( 𝜑 → ( 𝐿 + - 2 ) = ( 𝐿 − 2 ) ) |
| 55 | 39 49 54 | 3eqtrd | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , ∅ 〉 ) ) = ( 𝐿 − 2 ) ) |
| 56 | 55 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) → ( ♯ ‘ ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , ∅ 〉 ) ) = ( 𝐿 − 2 ) ) |
| 57 | splid | ⊢ ( ( 𝑊 ∈ Word 𝑇 ∧ ( 𝐼 ∈ ( 0 ... ( 𝐼 + 2 ) ) ∧ ( 𝐼 + 2 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 2 ) 〉 ) 〉 ) = 𝑊 ) | |
| 58 | 4 26 37 57 | syl12anc | ⊢ ( 𝜑 → ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 2 ) 〉 ) 〉 ) = 𝑊 ) |
| 59 | 58 | oveq2d | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 2 ) 〉 ) 〉 ) ) = ( 𝐺 Σg 𝑊 ) ) |
| 60 | 59 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) → ( 𝐺 Σg ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 2 ) 〉 ) 〉 ) ) = ( 𝐺 Σg 𝑊 ) ) |
| 61 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 62 | 1 | symggrp | ⊢ ( 𝐷 ∈ 𝑉 → 𝐺 ∈ Grp ) |
| 63 | 3 62 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 64 | 63 | grpmndd | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 65 | 64 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) → 𝐺 ∈ Mnd ) |
| 66 | 2 1 61 | symgtrf | ⊢ 𝑇 ⊆ ( Base ‘ 𝐺 ) |
| 67 | sswrd | ⊢ ( 𝑇 ⊆ ( Base ‘ 𝐺 ) → Word 𝑇 ⊆ Word ( Base ‘ 𝐺 ) ) | |
| 68 | 66 67 | ax-mp | ⊢ Word 𝑇 ⊆ Word ( Base ‘ 𝐺 ) |
| 69 | 68 4 | sselid | ⊢ ( 𝜑 → 𝑊 ∈ Word ( Base ‘ 𝐺 ) ) |
| 70 | 69 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) → 𝑊 ∈ Word ( Base ‘ 𝐺 ) ) |
| 71 | 26 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) → 𝐼 ∈ ( 0 ... ( 𝐼 + 2 ) ) ) |
| 72 | 37 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) → ( 𝐼 + 2 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
| 73 | swrdcl | ⊢ ( 𝑊 ∈ Word ( Base ‘ 𝐺 ) → ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 2 ) 〉 ) ∈ Word ( Base ‘ 𝐺 ) ) | |
| 74 | 69 73 | syl | ⊢ ( 𝜑 → ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 2 ) 〉 ) ∈ Word ( Base ‘ 𝐺 ) ) |
| 75 | 74 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) → ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 2 ) 〉 ) ∈ Word ( Base ‘ 𝐺 ) ) |
| 76 | wrd0 | ⊢ ∅ ∈ Word ( Base ‘ 𝐺 ) | |
| 77 | 76 | a1i | ⊢ ( ( 𝜑 ∧ ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) → ∅ ∈ Word ( Base ‘ 𝐺 ) ) |
| 78 | 6 | oveq2d | ⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ( 0 ..^ 𝐿 ) ) |
| 79 | 27 78 | eleqtrrd | ⊢ ( 𝜑 → ( 𝐼 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 80 | swrds2 | ⊢ ( ( 𝑊 ∈ Word 𝑇 ∧ 𝐼 ∈ ℕ0 ∧ ( 𝐼 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 2 ) 〉 ) = 〈“ ( 𝑊 ‘ 𝐼 ) ( 𝑊 ‘ ( 𝐼 + 1 ) ) ”〉 ) | |
| 81 | 4 18 79 80 | syl3anc | ⊢ ( 𝜑 → ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 2 ) 〉 ) = 〈“ ( 𝑊 ‘ 𝐼 ) ( 𝑊 ‘ ( 𝐼 + 1 ) ) ”〉 ) |
| 82 | 81 | oveq2d | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 2 ) 〉 ) ) = ( 𝐺 Σg 〈“ ( 𝑊 ‘ 𝐼 ) ( 𝑊 ‘ ( 𝐼 + 1 ) ) ”〉 ) ) |
| 83 | wrdf | ⊢ ( 𝑊 ∈ Word 𝑇 → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑇 ) | |
| 84 | 4 83 | syl | ⊢ ( 𝜑 → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑇 ) |
| 85 | 78 | feq2d | ⊢ ( 𝜑 → ( 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑇 ↔ 𝑊 : ( 0 ..^ 𝐿 ) ⟶ 𝑇 ) ) |
| 86 | 84 85 | mpbid | ⊢ ( 𝜑 → 𝑊 : ( 0 ..^ 𝐿 ) ⟶ 𝑇 ) |
| 87 | 86 7 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝑊 ‘ 𝐼 ) ∈ 𝑇 ) |
| 88 | 66 87 | sselid | ⊢ ( 𝜑 → ( 𝑊 ‘ 𝐼 ) ∈ ( Base ‘ 𝐺 ) ) |
| 89 | 86 27 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝑊 ‘ ( 𝐼 + 1 ) ) ∈ 𝑇 ) |
| 90 | 66 89 | sselid | ⊢ ( 𝜑 → ( 𝑊 ‘ ( 𝐼 + 1 ) ) ∈ ( Base ‘ 𝐺 ) ) |
| 91 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 92 | 61 91 | gsumws2 | ⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑊 ‘ 𝐼 ) ∈ ( Base ‘ 𝐺 ) ∧ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ∈ ( Base ‘ 𝐺 ) ) → ( 𝐺 Σg 〈“ ( 𝑊 ‘ 𝐼 ) ( 𝑊 ‘ ( 𝐼 + 1 ) ) ”〉 ) = ( ( 𝑊 ‘ 𝐼 ) ( +g ‘ 𝐺 ) ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) ) |
| 93 | 64 88 90 92 | syl3anc | ⊢ ( 𝜑 → ( 𝐺 Σg 〈“ ( 𝑊 ‘ 𝐼 ) ( 𝑊 ‘ ( 𝐼 + 1 ) ) ”〉 ) = ( ( 𝑊 ‘ 𝐼 ) ( +g ‘ 𝐺 ) ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) ) |
| 94 | 1 61 91 | symgov | ⊢ ( ( ( 𝑊 ‘ 𝐼 ) ∈ ( Base ‘ 𝐺 ) ∧ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑊 ‘ 𝐼 ) ( +g ‘ 𝐺 ) ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) ) |
| 95 | 88 90 94 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑊 ‘ 𝐼 ) ( +g ‘ 𝐺 ) ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) ) |
| 96 | 82 93 95 | 3eqtrd | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 2 ) 〉 ) ) = ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) ) |
| 97 | 96 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) → ( 𝐺 Σg ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 2 ) 〉 ) ) = ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) ) |
| 98 | simpr | ⊢ ( ( 𝜑 ∧ ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) → ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) | |
| 99 | 1 | symgid | ⊢ ( 𝐷 ∈ 𝑉 → ( I ↾ 𝐷 ) = ( 0g ‘ 𝐺 ) ) |
| 100 | 3 99 | syl | ⊢ ( 𝜑 → ( I ↾ 𝐷 ) = ( 0g ‘ 𝐺 ) ) |
| 101 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 102 | 101 | gsum0 | ⊢ ( 𝐺 Σg ∅ ) = ( 0g ‘ 𝐺 ) |
| 103 | 100 102 | eqtr4di | ⊢ ( 𝜑 → ( I ↾ 𝐷 ) = ( 𝐺 Σg ∅ ) ) |
| 104 | 103 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) → ( I ↾ 𝐷 ) = ( 𝐺 Σg ∅ ) ) |
| 105 | 97 98 104 | 3eqtrd | ⊢ ( ( 𝜑 ∧ ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) → ( 𝐺 Σg ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 2 ) 〉 ) ) = ( 𝐺 Σg ∅ ) ) |
| 106 | 61 65 70 71 72 75 77 105 | gsumspl | ⊢ ( ( 𝜑 ∧ ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) → ( 𝐺 Σg ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 2 ) 〉 ) 〉 ) ) = ( 𝐺 Σg ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , ∅ 〉 ) ) ) |
| 107 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) → ( 𝐺 Σg 𝑊 ) = ( I ↾ 𝐷 ) ) |
| 108 | 60 106 107 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) → ( 𝐺 Σg ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , ∅ 〉 ) ) = ( I ↾ 𝐷 ) ) |
| 109 | fveqeq2 | ⊢ ( 𝑥 = ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , ∅ 〉 ) → ( ( ♯ ‘ 𝑥 ) = ( 𝐿 − 2 ) ↔ ( ♯ ‘ ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , ∅ 〉 ) ) = ( 𝐿 − 2 ) ) ) | |
| 110 | oveq2 | ⊢ ( 𝑥 = ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , ∅ 〉 ) → ( 𝐺 Σg 𝑥 ) = ( 𝐺 Σg ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , ∅ 〉 ) ) ) | |
| 111 | 110 | eqeq1d | ⊢ ( 𝑥 = ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , ∅ 〉 ) → ( ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ↔ ( 𝐺 Σg ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , ∅ 〉 ) ) = ( I ↾ 𝐷 ) ) ) |
| 112 | 109 111 | anbi12d | ⊢ ( 𝑥 = ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , ∅ 〉 ) → ( ( ( ♯ ‘ 𝑥 ) = ( 𝐿 − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ↔ ( ( ♯ ‘ ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , ∅ 〉 ) ) = ( 𝐿 − 2 ) ∧ ( 𝐺 Σg ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , ∅ 〉 ) ) = ( I ↾ 𝐷 ) ) ) ) |
| 113 | 112 | rspcev | ⊢ ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , ∅ 〉 ) ∈ Word 𝑇 ∧ ( ( ♯ ‘ ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , ∅ 〉 ) ) = ( 𝐿 − 2 ) ∧ ( 𝐺 Σg ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , ∅ 〉 ) ) = ( I ↾ 𝐷 ) ) ) → ∃ 𝑥 ∈ Word 𝑇 ( ( ♯ ‘ 𝑥 ) = ( 𝐿 − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) |
| 114 | 14 56 108 113 | syl12anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) → ∃ 𝑥 ∈ Word 𝑇 ( ( ♯ ‘ 𝑥 ) = ( 𝐿 − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) |
| 115 | 10 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) → ¬ ∃ 𝑥 ∈ Word 𝑇 ( ( ♯ ‘ 𝑥 ) = ( 𝐿 − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) |
| 116 | 114 115 | pm2.21dd | ⊢ ( ( 𝜑 ∧ ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) → ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∧ 𝐴 ∈ dom ( ( 𝑤 ‘ ( 𝐼 + 1 ) ) ∖ I ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ¬ 𝐴 ∈ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ) |
| 117 | 116 | ex | ⊢ ( 𝜑 → ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) → ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∧ 𝐴 ∈ dom ( ( 𝑤 ‘ ( 𝐼 + 1 ) ) ∖ I ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ¬ 𝐴 ∈ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ) ) |
| 118 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → 𝑊 ∈ Word 𝑇 ) |
| 119 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → 𝑟 ∈ 𝑇 ) | |
| 120 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → 𝑠 ∈ 𝑇 ) | |
| 121 | 119 120 | s2cld | ⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → 〈“ 𝑟 𝑠 ”〉 ∈ Word 𝑇 ) |
| 122 | splcl | ⊢ ( ( 𝑊 ∈ Word 𝑇 ∧ 〈“ 𝑟 𝑠 ”〉 ∈ Word 𝑇 ) → ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ∈ Word 𝑇 ) | |
| 123 | 118 121 122 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ∈ Word 𝑇 ) |
| 124 | 123 | adantrr | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ∈ Word 𝑇 ) |
| 125 | 64 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → 𝐺 ∈ Mnd ) |
| 126 | 69 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → 𝑊 ∈ Word ( Base ‘ 𝐺 ) ) |
| 127 | 26 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → 𝐼 ∈ ( 0 ... ( 𝐼 + 2 ) ) ) |
| 128 | 37 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( 𝐼 + 2 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
| 129 | 68 121 | sselid | ⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → 〈“ 𝑟 𝑠 ”〉 ∈ Word ( Base ‘ 𝐺 ) ) |
| 130 | 129 | adantrr | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → 〈“ 𝑟 𝑠 ”〉 ∈ Word ( Base ‘ 𝐺 ) ) |
| 131 | 74 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 2 ) 〉 ) ∈ Word ( Base ‘ 𝐺 ) ) |
| 132 | simprr1 | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ) | |
| 133 | 96 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( 𝐺 Σg ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 2 ) 〉 ) ) = ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) ) |
| 134 | 64 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → 𝐺 ∈ Mnd ) |
| 135 | 66 | a1i | ⊢ ( 𝜑 → 𝑇 ⊆ ( Base ‘ 𝐺 ) ) |
| 136 | 135 | sselda | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑇 ) → 𝑟 ∈ ( Base ‘ 𝐺 ) ) |
| 137 | 136 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → 𝑟 ∈ ( Base ‘ 𝐺 ) ) |
| 138 | 135 | sselda | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑇 ) → 𝑠 ∈ ( Base ‘ 𝐺 ) ) |
| 139 | 138 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → 𝑠 ∈ ( Base ‘ 𝐺 ) ) |
| 140 | 61 91 | gsumws2 | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑟 ∈ ( Base ‘ 𝐺 ) ∧ 𝑠 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐺 Σg 〈“ 𝑟 𝑠 ”〉 ) = ( 𝑟 ( +g ‘ 𝐺 ) 𝑠 ) ) |
| 141 | 134 137 139 140 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → ( 𝐺 Σg 〈“ 𝑟 𝑠 ”〉 ) = ( 𝑟 ( +g ‘ 𝐺 ) 𝑠 ) ) |
| 142 | 1 61 91 | symgov | ⊢ ( ( 𝑟 ∈ ( Base ‘ 𝐺 ) ∧ 𝑠 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑟 ( +g ‘ 𝐺 ) 𝑠 ) = ( 𝑟 ∘ 𝑠 ) ) |
| 143 | 137 139 142 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → ( 𝑟 ( +g ‘ 𝐺 ) 𝑠 ) = ( 𝑟 ∘ 𝑠 ) ) |
| 144 | 141 143 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → ( 𝐺 Σg 〈“ 𝑟 𝑠 ”〉 ) = ( 𝑟 ∘ 𝑠 ) ) |
| 145 | 144 | adantrr | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( 𝐺 Σg 〈“ 𝑟 𝑠 ”〉 ) = ( 𝑟 ∘ 𝑠 ) ) |
| 146 | 132 133 145 | 3eqtr4rd | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( 𝐺 Σg 〈“ 𝑟 𝑠 ”〉 ) = ( 𝐺 Σg ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 2 ) 〉 ) ) ) |
| 147 | 61 125 126 127 128 130 131 146 | gsumspl | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( 𝐺 Σg ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ) = ( 𝐺 Σg ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 2 ) 〉 ) 〉 ) ) ) |
| 148 | 59 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( 𝐺 Σg ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 2 ) 〉 ) 〉 ) ) = ( 𝐺 Σg 𝑊 ) ) |
| 149 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( 𝐺 Σg 𝑊 ) = ( I ↾ 𝐷 ) ) |
| 150 | 147 148 149 | 3eqtrd | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( 𝐺 Σg ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ) = ( I ↾ 𝐷 ) ) |
| 151 | 26 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → 𝐼 ∈ ( 0 ... ( 𝐼 + 2 ) ) ) |
| 152 | 37 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → ( 𝐼 + 2 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
| 153 | 118 151 152 121 | spllen | ⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → ( ♯ ‘ ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ) = ( ( ♯ ‘ 𝑊 ) + ( ( ♯ ‘ 〈“ 𝑟 𝑠 ”〉 ) − ( ( 𝐼 + 2 ) − 𝐼 ) ) ) ) |
| 154 | s2len | ⊢ ( ♯ ‘ 〈“ 𝑟 𝑠 ”〉 ) = 2 | |
| 155 | 154 | oveq1i | ⊢ ( ( ♯ ‘ 〈“ 𝑟 𝑠 ”〉 ) − ( ( 𝐼 + 2 ) − 𝐼 ) ) = ( 2 − ( ( 𝐼 + 2 ) − 𝐼 ) ) |
| 156 | 46 | oveq2d | ⊢ ( 𝜑 → ( 2 − ( ( 𝐼 + 2 ) − 𝐼 ) ) = ( 2 − 2 ) ) |
| 157 | 44 | subidi | ⊢ ( 2 − 2 ) = 0 |
| 158 | 156 157 | eqtrdi | ⊢ ( 𝜑 → ( 2 − ( ( 𝐼 + 2 ) − 𝐼 ) ) = 0 ) |
| 159 | 155 158 | eqtrid | ⊢ ( 𝜑 → ( ( ♯ ‘ 〈“ 𝑟 𝑠 ”〉 ) − ( ( 𝐼 + 2 ) − 𝐼 ) ) = 0 ) |
| 160 | 159 | oveq2d | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝑊 ) + ( ( ♯ ‘ 〈“ 𝑟 𝑠 ”〉 ) − ( ( 𝐼 + 2 ) − 𝐼 ) ) ) = ( ( ♯ ‘ 𝑊 ) + 0 ) ) |
| 161 | 6 52 | eqeltrd | ⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) ∈ ℂ ) |
| 162 | 161 | addridd | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝑊 ) + 0 ) = ( ♯ ‘ 𝑊 ) ) |
| 163 | 160 162 6 | 3eqtrd | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝑊 ) + ( ( ♯ ‘ 〈“ 𝑟 𝑠 ”〉 ) − ( ( 𝐼 + 2 ) − 𝐼 ) ) ) = 𝐿 ) |
| 164 | 163 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → ( ( ♯ ‘ 𝑊 ) + ( ( ♯ ‘ 〈“ 𝑟 𝑠 ”〉 ) − ( ( 𝐼 + 2 ) − 𝐼 ) ) ) = 𝐿 ) |
| 165 | 153 164 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → ( ♯ ‘ ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ) = 𝐿 ) |
| 166 | 165 | adantrr | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( ♯ ‘ ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ) = 𝐿 ) |
| 167 | 150 166 | jca | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( ( 𝐺 Σg ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ) = 𝐿 ) ) |
| 168 | 27 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) ) |
| 169 | simprr2 | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → 𝐴 ∈ dom ( 𝑠 ∖ I ) ) | |
| 170 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 171 | 2nn | ⊢ 2 ∈ ℕ | |
| 172 | 1lt2 | ⊢ 1 < 2 | |
| 173 | elfzo0 | ⊢ ( 1 ∈ ( 0 ..^ 2 ) ↔ ( 1 ∈ ℕ0 ∧ 2 ∈ ℕ ∧ 1 < 2 ) ) | |
| 174 | 170 171 172 173 | mpbir3an | ⊢ 1 ∈ ( 0 ..^ 2 ) |
| 175 | 154 | oveq2i | ⊢ ( 0 ..^ ( ♯ ‘ 〈“ 𝑟 𝑠 ”〉 ) ) = ( 0 ..^ 2 ) |
| 176 | 174 175 | eleqtrri | ⊢ 1 ∈ ( 0 ..^ ( ♯ ‘ 〈“ 𝑟 𝑠 ”〉 ) ) |
| 177 | 176 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → 1 ∈ ( 0 ..^ ( ♯ ‘ 〈“ 𝑟 𝑠 ”〉 ) ) ) |
| 178 | 118 151 152 121 177 | splfv2a | ⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ ( 𝐼 + 1 ) ) = ( 〈“ 𝑟 𝑠 ”〉 ‘ 1 ) ) |
| 179 | s2fv1 | ⊢ ( 𝑠 ∈ 𝑇 → ( 〈“ 𝑟 𝑠 ”〉 ‘ 1 ) = 𝑠 ) | |
| 180 | 179 | ad2antll | ⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → ( 〈“ 𝑟 𝑠 ”〉 ‘ 1 ) = 𝑠 ) |
| 181 | 178 180 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ ( 𝐼 + 1 ) ) = 𝑠 ) |
| 182 | 181 | adantrr | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ ( 𝐼 + 1 ) ) = 𝑠 ) |
| 183 | 182 | difeq1d | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ ( 𝐼 + 1 ) ) ∖ I ) = ( 𝑠 ∖ I ) ) |
| 184 | 183 | dmeqd | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ ( 𝐼 + 1 ) ) ∖ I ) = dom ( 𝑠 ∖ I ) ) |
| 185 | 169 184 | eleqtrrd | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → 𝐴 ∈ dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ ( 𝐼 + 1 ) ) ∖ I ) ) |
| 186 | fzosplitsni | ⊢ ( 𝐼 ∈ ( ℤ≥ ‘ 0 ) → ( 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ↔ ( 𝑗 ∈ ( 0 ..^ 𝐼 ) ∨ 𝑗 = 𝐼 ) ) ) | |
| 187 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 188 | 186 187 | eleq2s | ⊢ ( 𝐼 ∈ ℕ0 → ( 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ↔ ( 𝑗 ∈ ( 0 ..^ 𝐼 ) ∨ 𝑗 = 𝐼 ) ) ) |
| 189 | 18 188 | syl | ⊢ ( 𝜑 → ( 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ↔ ( 𝑗 ∈ ( 0 ..^ 𝐼 ) ∨ 𝑗 = 𝐼 ) ) ) |
| 190 | 189 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ↔ ( 𝑗 ∈ ( 0 ..^ 𝐼 ) ∨ 𝑗 = 𝐼 ) ) ) |
| 191 | fveq2 | ⊢ ( 𝑘 = 𝑗 → ( 𝑊 ‘ 𝑘 ) = ( 𝑊 ‘ 𝑗 ) ) | |
| 192 | 191 | difeq1d | ⊢ ( 𝑘 = 𝑗 → ( ( 𝑊 ‘ 𝑘 ) ∖ I ) = ( ( 𝑊 ‘ 𝑗 ) ∖ I ) ) |
| 193 | 192 | dmeqd | ⊢ ( 𝑘 = 𝑗 → dom ( ( 𝑊 ‘ 𝑘 ) ∖ I ) = dom ( ( 𝑊 ‘ 𝑗 ) ∖ I ) ) |
| 194 | 193 | eleq2d | ⊢ ( 𝑘 = 𝑗 → ( 𝐴 ∈ dom ( ( 𝑊 ‘ 𝑘 ) ∖ I ) ↔ 𝐴 ∈ dom ( ( 𝑊 ‘ 𝑗 ) ∖ I ) ) ) |
| 195 | 194 | notbid | ⊢ ( 𝑘 = 𝑗 → ( ¬ 𝐴 ∈ dom ( ( 𝑊 ‘ 𝑘 ) ∖ I ) ↔ ¬ 𝐴 ∈ dom ( ( 𝑊 ‘ 𝑗 ) ∖ I ) ) ) |
| 196 | 195 | rspccva | ⊢ ( ( ∀ 𝑘 ∈ ( 0 ..^ 𝐼 ) ¬ 𝐴 ∈ dom ( ( 𝑊 ‘ 𝑘 ) ∖ I ) ∧ 𝑗 ∈ ( 0 ..^ 𝐼 ) ) → ¬ 𝐴 ∈ dom ( ( 𝑊 ‘ 𝑗 ) ∖ I ) ) |
| 197 | 9 196 | sylan | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝐼 ) ) → ¬ 𝐴 ∈ dom ( ( 𝑊 ‘ 𝑗 ) ∖ I ) ) |
| 198 | 197 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) ∧ 𝑗 ∈ ( 0 ..^ 𝐼 ) ) → ¬ 𝐴 ∈ dom ( ( 𝑊 ‘ 𝑗 ) ∖ I ) ) |
| 199 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) ∧ 𝑗 ∈ ( 0 ..^ 𝐼 ) ) → 𝑊 ∈ Word 𝑇 ) |
| 200 | 26 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) ∧ 𝑗 ∈ ( 0 ..^ 𝐼 ) ) → 𝐼 ∈ ( 0 ... ( 𝐼 + 2 ) ) ) |
| 201 | 37 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) ∧ 𝑗 ∈ ( 0 ..^ 𝐼 ) ) → ( 𝐼 + 2 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
| 202 | 121 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) ∧ 𝑗 ∈ ( 0 ..^ 𝐼 ) ) → 〈“ 𝑟 𝑠 ”〉 ∈ Word 𝑇 ) |
| 203 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) ∧ 𝑗 ∈ ( 0 ..^ 𝐼 ) ) → 𝑗 ∈ ( 0 ..^ 𝐼 ) ) | |
| 204 | 199 200 201 202 203 | splfv1 | ⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) ∧ 𝑗 ∈ ( 0 ..^ 𝐼 ) ) → ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 ) = ( 𝑊 ‘ 𝑗 ) ) |
| 205 | 204 | difeq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) ∧ 𝑗 ∈ ( 0 ..^ 𝐼 ) ) → ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 ) ∖ I ) = ( ( 𝑊 ‘ 𝑗 ) ∖ I ) ) |
| 206 | 205 | dmeqd | ⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) ∧ 𝑗 ∈ ( 0 ..^ 𝐼 ) ) → dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 ) ∖ I ) = dom ( ( 𝑊 ‘ 𝑗 ) ∖ I ) ) |
| 207 | 198 206 | neleqtrrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) ∧ 𝑗 ∈ ( 0 ..^ 𝐼 ) ) → ¬ 𝐴 ∈ dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 ) ∖ I ) ) |
| 208 | 207 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → ( 𝑗 ∈ ( 0 ..^ 𝐼 ) → ¬ 𝐴 ∈ dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 ) ∖ I ) ) ) |
| 209 | 208 | adantrr | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( 𝑗 ∈ ( 0 ..^ 𝐼 ) → ¬ 𝐴 ∈ dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 ) ∖ I ) ) ) |
| 210 | simprr3 | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) | |
| 211 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 212 | 2pos | ⊢ 0 < 2 | |
| 213 | elfzo0 | ⊢ ( 0 ∈ ( 0 ..^ 2 ) ↔ ( 0 ∈ ℕ0 ∧ 2 ∈ ℕ ∧ 0 < 2 ) ) | |
| 214 | 211 171 212 213 | mpbir3an | ⊢ 0 ∈ ( 0 ..^ 2 ) |
| 215 | 214 175 | eleqtrri | ⊢ 0 ∈ ( 0 ..^ ( ♯ ‘ 〈“ 𝑟 𝑠 ”〉 ) ) |
| 216 | 215 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → 0 ∈ ( 0 ..^ ( ♯ ‘ 〈“ 𝑟 𝑠 ”〉 ) ) ) |
| 217 | 118 151 152 121 216 | splfv2a | ⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ ( 𝐼 + 0 ) ) = ( 〈“ 𝑟 𝑠 ”〉 ‘ 0 ) ) |
| 218 | 32 | addridd | ⊢ ( 𝜑 → ( 𝐼 + 0 ) = 𝐼 ) |
| 219 | 218 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → ( 𝐼 + 0 ) = 𝐼 ) |
| 220 | 219 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ ( 𝐼 + 0 ) ) = ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝐼 ) ) |
| 221 | s2fv0 | ⊢ ( 𝑟 ∈ 𝑇 → ( 〈“ 𝑟 𝑠 ”〉 ‘ 0 ) = 𝑟 ) | |
| 222 | 221 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → ( 〈“ 𝑟 𝑠 ”〉 ‘ 0 ) = 𝑟 ) |
| 223 | 217 220 222 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝐼 ) = 𝑟 ) |
| 224 | 223 | difeq1d | ⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝐼 ) ∖ I ) = ( 𝑟 ∖ I ) ) |
| 225 | 224 | dmeqd | ⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝐼 ) ∖ I ) = dom ( 𝑟 ∖ I ) ) |
| 226 | 225 | eleq2d | ⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → ( 𝐴 ∈ dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝐼 ) ∖ I ) ↔ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) |
| 227 | 226 | adantrr | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( 𝐴 ∈ dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝐼 ) ∖ I ) ↔ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) |
| 228 | 210 227 | mtbird | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ¬ 𝐴 ∈ dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝐼 ) ∖ I ) ) |
| 229 | fveq2 | ⊢ ( 𝑗 = 𝐼 → ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 ) = ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝐼 ) ) | |
| 230 | 229 | difeq1d | ⊢ ( 𝑗 = 𝐼 → ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 ) ∖ I ) = ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝐼 ) ∖ I ) ) |
| 231 | 230 | dmeqd | ⊢ ( 𝑗 = 𝐼 → dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 ) ∖ I ) = dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝐼 ) ∖ I ) ) |
| 232 | 231 | eleq2d | ⊢ ( 𝑗 = 𝐼 → ( 𝐴 ∈ dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 ) ∖ I ) ↔ 𝐴 ∈ dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝐼 ) ∖ I ) ) ) |
| 233 | 232 | notbid | ⊢ ( 𝑗 = 𝐼 → ( ¬ 𝐴 ∈ dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 ) ∖ I ) ↔ ¬ 𝐴 ∈ dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝐼 ) ∖ I ) ) ) |
| 234 | 228 233 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( 𝑗 = 𝐼 → ¬ 𝐴 ∈ dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 ) ∖ I ) ) ) |
| 235 | 209 234 | jaod | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( ( 𝑗 ∈ ( 0 ..^ 𝐼 ) ∨ 𝑗 = 𝐼 ) → ¬ 𝐴 ∈ dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 ) ∖ I ) ) ) |
| 236 | 190 235 | sylbid | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) → ¬ 𝐴 ∈ dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 ) ∖ I ) ) ) |
| 237 | 236 | ralrimiv | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ∀ 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ¬ 𝐴 ∈ dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 ) ∖ I ) ) |
| 238 | 168 185 237 | 3jca | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∧ 𝐴 ∈ dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ ( 𝐼 + 1 ) ) ∖ I ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ¬ 𝐴 ∈ dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 ) ∖ I ) ) ) |
| 239 | oveq2 | ⊢ ( 𝑤 = ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) → ( 𝐺 Σg 𝑤 ) = ( 𝐺 Σg ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ) ) | |
| 240 | 239 | eqeq1d | ⊢ ( 𝑤 = ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) → ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ↔ ( 𝐺 Σg ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ) = ( I ↾ 𝐷 ) ) ) |
| 241 | fveqeq2 | ⊢ ( 𝑤 = ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) → ( ( ♯ ‘ 𝑤 ) = 𝐿 ↔ ( ♯ ‘ ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ) = 𝐿 ) ) | |
| 242 | 240 241 | anbi12d | ⊢ ( 𝑤 = ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) → ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ↔ ( ( 𝐺 Σg ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ) = 𝐿 ) ) ) |
| 243 | fveq1 | ⊢ ( 𝑤 = ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) → ( 𝑤 ‘ ( 𝐼 + 1 ) ) = ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ ( 𝐼 + 1 ) ) ) | |
| 244 | 243 | difeq1d | ⊢ ( 𝑤 = ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) → ( ( 𝑤 ‘ ( 𝐼 + 1 ) ) ∖ I ) = ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ ( 𝐼 + 1 ) ) ∖ I ) ) |
| 245 | 244 | dmeqd | ⊢ ( 𝑤 = ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) → dom ( ( 𝑤 ‘ ( 𝐼 + 1 ) ) ∖ I ) = dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ ( 𝐼 + 1 ) ) ∖ I ) ) |
| 246 | 245 | eleq2d | ⊢ ( 𝑤 = ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) → ( 𝐴 ∈ dom ( ( 𝑤 ‘ ( 𝐼 + 1 ) ) ∖ I ) ↔ 𝐴 ∈ dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ ( 𝐼 + 1 ) ) ∖ I ) ) ) |
| 247 | fveq1 | ⊢ ( 𝑤 = ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) → ( 𝑤 ‘ 𝑗 ) = ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 ) ) | |
| 248 | 247 | difeq1d | ⊢ ( 𝑤 = ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) → ( ( 𝑤 ‘ 𝑗 ) ∖ I ) = ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 ) ∖ I ) ) |
| 249 | 248 | dmeqd | ⊢ ( 𝑤 = ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) → dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) = dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 ) ∖ I ) ) |
| 250 | 249 | eleq2d | ⊢ ( 𝑤 = ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) → ( 𝐴 ∈ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ↔ 𝐴 ∈ dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 ) ∖ I ) ) ) |
| 251 | 250 | notbid | ⊢ ( 𝑤 = ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) → ( ¬ 𝐴 ∈ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ↔ ¬ 𝐴 ∈ dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 ) ∖ I ) ) ) |
| 252 | 251 | ralbidv | ⊢ ( 𝑤 = ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) → ( ∀ 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ¬ 𝐴 ∈ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ↔ ∀ 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ¬ 𝐴 ∈ dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 ) ∖ I ) ) ) |
| 253 | 246 252 | 3anbi23d | ⊢ ( 𝑤 = ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) → ( ( ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∧ 𝐴 ∈ dom ( ( 𝑤 ‘ ( 𝐼 + 1 ) ) ∖ I ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ¬ 𝐴 ∈ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ↔ ( ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∧ 𝐴 ∈ dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ ( 𝐼 + 1 ) ) ∖ I ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ¬ 𝐴 ∈ dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 ) ∖ I ) ) ) ) |
| 254 | 242 253 | anbi12d | ⊢ ( 𝑤 = ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) → ( ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∧ 𝐴 ∈ dom ( ( 𝑤 ‘ ( 𝐼 + 1 ) ) ∖ I ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ¬ 𝐴 ∈ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ↔ ( ( ( 𝐺 Σg ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ) = 𝐿 ) ∧ ( ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∧ 𝐴 ∈ dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ ( 𝐼 + 1 ) ) ∖ I ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ¬ 𝐴 ∈ dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 ) ∖ I ) ) ) ) ) |
| 255 | 254 | rspcev | ⊢ ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ∈ Word 𝑇 ∧ ( ( ( 𝐺 Σg ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ) = 𝐿 ) ∧ ( ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∧ 𝐴 ∈ dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ ( 𝐼 + 1 ) ) ∖ I ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ¬ 𝐴 ∈ dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 ) ∖ I ) ) ) ) → ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∧ 𝐴 ∈ dom ( ( 𝑤 ‘ ( 𝐼 + 1 ) ) ∖ I ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ¬ 𝐴 ∈ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ) |
| 256 | 124 167 238 255 | syl12anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∧ 𝐴 ∈ dom ( ( 𝑤 ‘ ( 𝐼 + 1 ) ) ∖ I ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ¬ 𝐴 ∈ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ) |
| 257 | 256 | expr | ⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → ( ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) → ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∧ 𝐴 ∈ dom ( ( 𝑤 ‘ ( 𝐼 + 1 ) ) ∖ I ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ¬ 𝐴 ∈ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ) ) |
| 258 | 257 | rexlimdvva | ⊢ ( 𝜑 → ( ∃ 𝑟 ∈ 𝑇 ∃ 𝑠 ∈ 𝑇 ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) → ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∧ 𝐴 ∈ dom ( ( 𝑤 ‘ ( 𝐼 + 1 ) ) ∖ I ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ¬ 𝐴 ∈ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ) ) |
| 259 | 2 3 87 89 8 | psgnunilem1 | ⊢ ( 𝜑 → ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ∨ ∃ 𝑟 ∈ 𝑇 ∃ 𝑠 ∈ 𝑇 ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) |
| 260 | 117 258 259 | mpjaod | ⊢ ( 𝜑 → ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∧ 𝐴 ∈ dom ( ( 𝑤 ‘ ( 𝐼 + 1 ) ) ∖ I ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ¬ 𝐴 ∈ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ) |