This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for psgnuni . Given two consequtive transpositions in a representation of a permutation, either they are equal and therefore equivalent to the identity, or they are not and it is possible to commute them such that a chosen point in the left transposition is preserved in the right. By repeating this process, a point can be removed from a representation of the identity. (Contributed by Stefan O'Rear, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgnunilem1.t | ⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) | |
| psgnunilem1.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) | ||
| psgnunilem1.p | ⊢ ( 𝜑 → 𝑃 ∈ 𝑇 ) | ||
| psgnunilem1.q | ⊢ ( 𝜑 → 𝑄 ∈ 𝑇 ) | ||
| psgnunilem1.a | ⊢ ( 𝜑 → 𝐴 ∈ dom ( 𝑃 ∖ I ) ) | ||
| Assertion | psgnunilem1 | ⊢ ( 𝜑 → ( ( 𝑃 ∘ 𝑄 ) = ( I ↾ 𝐷 ) ∨ ∃ 𝑟 ∈ 𝑇 ∃ 𝑠 ∈ 𝑇 ( ( 𝑃 ∘ 𝑄 ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgnunilem1.t | ⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) | |
| 2 | psgnunilem1.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) | |
| 3 | psgnunilem1.p | ⊢ ( 𝜑 → 𝑃 ∈ 𝑇 ) | |
| 4 | psgnunilem1.q | ⊢ ( 𝜑 → 𝑄 ∈ 𝑇 ) | |
| 5 | psgnunilem1.a | ⊢ ( 𝜑 → 𝐴 ∈ dom ( 𝑃 ∖ I ) ) | |
| 6 | eqid | ⊢ ( pmTrsp ‘ 𝐷 ) = ( pmTrsp ‘ 𝐷 ) | |
| 7 | 6 1 | pmtrfinv | ⊢ ( 𝑄 ∈ 𝑇 → ( 𝑄 ∘ 𝑄 ) = ( I ↾ 𝐷 ) ) |
| 8 | 4 7 | syl | ⊢ ( 𝜑 → ( 𝑄 ∘ 𝑄 ) = ( I ↾ 𝐷 ) ) |
| 9 | coeq1 | ⊢ ( 𝑃 = 𝑄 → ( 𝑃 ∘ 𝑄 ) = ( 𝑄 ∘ 𝑄 ) ) | |
| 10 | 9 | eqeq1d | ⊢ ( 𝑃 = 𝑄 → ( ( 𝑃 ∘ 𝑄 ) = ( I ↾ 𝐷 ) ↔ ( 𝑄 ∘ 𝑄 ) = ( I ↾ 𝐷 ) ) ) |
| 11 | 8 10 | syl5ibrcom | ⊢ ( 𝜑 → ( 𝑃 = 𝑄 → ( 𝑃 ∘ 𝑄 ) = ( I ↾ 𝐷 ) ) ) |
| 12 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) → ( 𝑃 = 𝑄 → ( 𝑃 ∘ 𝑄 ) = ( I ↾ 𝐷 ) ) ) |
| 13 | 12 | imp | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) ∧ 𝑃 = 𝑄 ) → ( 𝑃 ∘ 𝑄 ) = ( I ↾ 𝐷 ) ) |
| 14 | 13 | orcd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) ∧ 𝑃 = 𝑄 ) → ( ( 𝑃 ∘ 𝑄 ) = ( I ↾ 𝐷 ) ∨ ∃ 𝑟 ∈ 𝑇 ∃ 𝑠 ∈ 𝑇 ( ( 𝑃 ∘ 𝑄 ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) |
| 15 | 6 1 | pmtrfcnv | ⊢ ( 𝑃 ∈ 𝑇 → ◡ 𝑃 = 𝑃 ) |
| 16 | 3 15 | syl | ⊢ ( 𝜑 → ◡ 𝑃 = 𝑃 ) |
| 17 | 16 | eqcomd | ⊢ ( 𝜑 → 𝑃 = ◡ 𝑃 ) |
| 18 | 17 | coeq2d | ⊢ ( 𝜑 → ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) = ( ( 𝑃 ∘ 𝑄 ) ∘ ◡ 𝑃 ) ) |
| 19 | 6 1 | pmtrff1o | ⊢ ( 𝑃 ∈ 𝑇 → 𝑃 : 𝐷 –1-1-onto→ 𝐷 ) |
| 20 | 3 19 | syl | ⊢ ( 𝜑 → 𝑃 : 𝐷 –1-1-onto→ 𝐷 ) |
| 21 | 6 1 | pmtrfconj | ⊢ ( ( 𝑄 ∈ 𝑇 ∧ 𝑃 : 𝐷 –1-1-onto→ 𝐷 ) → ( ( 𝑃 ∘ 𝑄 ) ∘ ◡ 𝑃 ) ∈ 𝑇 ) |
| 22 | 4 20 21 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑃 ∘ 𝑄 ) ∘ ◡ 𝑃 ) ∈ 𝑇 ) |
| 23 | 18 22 | eqeltrd | ⊢ ( 𝜑 → ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∈ 𝑇 ) |
| 24 | 23 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) ∧ 𝑃 ≠ 𝑄 ) → ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∈ 𝑇 ) |
| 25 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) ∧ 𝑃 ≠ 𝑄 ) → 𝑃 ∈ 𝑇 ) |
| 26 | coass | ⊢ ( ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∘ 𝑃 ) = ( ( 𝑃 ∘ 𝑄 ) ∘ ( 𝑃 ∘ 𝑃 ) ) | |
| 27 | 6 1 | pmtrfinv | ⊢ ( 𝑃 ∈ 𝑇 → ( 𝑃 ∘ 𝑃 ) = ( I ↾ 𝐷 ) ) |
| 28 | 3 27 | syl | ⊢ ( 𝜑 → ( 𝑃 ∘ 𝑃 ) = ( I ↾ 𝐷 ) ) |
| 29 | 28 | coeq2d | ⊢ ( 𝜑 → ( ( 𝑃 ∘ 𝑄 ) ∘ ( 𝑃 ∘ 𝑃 ) ) = ( ( 𝑃 ∘ 𝑄 ) ∘ ( I ↾ 𝐷 ) ) ) |
| 30 | f1of | ⊢ ( 𝑃 : 𝐷 –1-1-onto→ 𝐷 → 𝑃 : 𝐷 ⟶ 𝐷 ) | |
| 31 | 20 30 | syl | ⊢ ( 𝜑 → 𝑃 : 𝐷 ⟶ 𝐷 ) |
| 32 | 6 1 | pmtrff1o | ⊢ ( 𝑄 ∈ 𝑇 → 𝑄 : 𝐷 –1-1-onto→ 𝐷 ) |
| 33 | 4 32 | syl | ⊢ ( 𝜑 → 𝑄 : 𝐷 –1-1-onto→ 𝐷 ) |
| 34 | f1of | ⊢ ( 𝑄 : 𝐷 –1-1-onto→ 𝐷 → 𝑄 : 𝐷 ⟶ 𝐷 ) | |
| 35 | 33 34 | syl | ⊢ ( 𝜑 → 𝑄 : 𝐷 ⟶ 𝐷 ) |
| 36 | fco | ⊢ ( ( 𝑃 : 𝐷 ⟶ 𝐷 ∧ 𝑄 : 𝐷 ⟶ 𝐷 ) → ( 𝑃 ∘ 𝑄 ) : 𝐷 ⟶ 𝐷 ) | |
| 37 | 31 35 36 | syl2anc | ⊢ ( 𝜑 → ( 𝑃 ∘ 𝑄 ) : 𝐷 ⟶ 𝐷 ) |
| 38 | fcoi1 | ⊢ ( ( 𝑃 ∘ 𝑄 ) : 𝐷 ⟶ 𝐷 → ( ( 𝑃 ∘ 𝑄 ) ∘ ( I ↾ 𝐷 ) ) = ( 𝑃 ∘ 𝑄 ) ) | |
| 39 | 37 38 | syl | ⊢ ( 𝜑 → ( ( 𝑃 ∘ 𝑄 ) ∘ ( I ↾ 𝐷 ) ) = ( 𝑃 ∘ 𝑄 ) ) |
| 40 | 29 39 | eqtrd | ⊢ ( 𝜑 → ( ( 𝑃 ∘ 𝑄 ) ∘ ( 𝑃 ∘ 𝑃 ) ) = ( 𝑃 ∘ 𝑄 ) ) |
| 41 | 26 40 | eqtr2id | ⊢ ( 𝜑 → ( 𝑃 ∘ 𝑄 ) = ( ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∘ 𝑃 ) ) |
| 42 | 41 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) ∧ 𝑃 ≠ 𝑄 ) → ( 𝑃 ∘ 𝑄 ) = ( ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∘ 𝑃 ) ) |
| 43 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) ∧ 𝑃 ≠ 𝑄 ) → 𝐴 ∈ dom ( 𝑃 ∖ I ) ) |
| 44 | 20 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ dom ( 𝑄 ∖ I ) ∧ 𝐴 ∈ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) ) → 𝑃 : 𝐷 –1-1-onto→ 𝐷 ) |
| 45 | 33 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ dom ( 𝑄 ∖ I ) ∧ 𝐴 ∈ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) ) → 𝑄 : 𝐷 –1-1-onto→ 𝐷 ) |
| 46 | 6 1 | pmtrfb | ⊢ ( 𝑃 ∈ 𝑇 ↔ ( 𝐷 ∈ V ∧ 𝑃 : 𝐷 –1-1-onto→ 𝐷 ∧ dom ( 𝑃 ∖ I ) ≈ 2o ) ) |
| 47 | 46 | simp3bi | ⊢ ( 𝑃 ∈ 𝑇 → dom ( 𝑃 ∖ I ) ≈ 2o ) |
| 48 | 3 47 | syl | ⊢ ( 𝜑 → dom ( 𝑃 ∖ I ) ≈ 2o ) |
| 49 | 48 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ dom ( 𝑄 ∖ I ) ∧ 𝐴 ∈ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) ) → dom ( 𝑃 ∖ I ) ≈ 2o ) |
| 50 | 2onn | ⊢ 2o ∈ ω | |
| 51 | nnfi | ⊢ ( 2o ∈ ω → 2o ∈ Fin ) | |
| 52 | 50 51 | ax-mp | ⊢ 2o ∈ Fin |
| 53 | 6 1 | pmtrfb | ⊢ ( 𝑄 ∈ 𝑇 ↔ ( 𝐷 ∈ V ∧ 𝑄 : 𝐷 –1-1-onto→ 𝐷 ∧ dom ( 𝑄 ∖ I ) ≈ 2o ) ) |
| 54 | 53 | simp3bi | ⊢ ( 𝑄 ∈ 𝑇 → dom ( 𝑄 ∖ I ) ≈ 2o ) |
| 55 | 4 54 | syl | ⊢ ( 𝜑 → dom ( 𝑄 ∖ I ) ≈ 2o ) |
| 56 | enfi | ⊢ ( dom ( 𝑄 ∖ I ) ≈ 2o → ( dom ( 𝑄 ∖ I ) ∈ Fin ↔ 2o ∈ Fin ) ) | |
| 57 | 55 56 | syl | ⊢ ( 𝜑 → ( dom ( 𝑄 ∖ I ) ∈ Fin ↔ 2o ∈ Fin ) ) |
| 58 | 52 57 | mpbiri | ⊢ ( 𝜑 → dom ( 𝑄 ∖ I ) ∈ Fin ) |
| 59 | 58 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ dom ( 𝑄 ∖ I ) ∧ 𝐴 ∈ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) ) → dom ( 𝑄 ∖ I ) ∈ Fin ) |
| 60 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ dom ( 𝑄 ∖ I ) ∧ 𝐴 ∈ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) ) → 𝐴 ∈ dom ( 𝑃 ∖ I ) ) |
| 61 | en2eleq | ⊢ ( ( 𝐴 ∈ dom ( 𝑃 ∖ I ) ∧ dom ( 𝑃 ∖ I ) ≈ 2o ) → dom ( 𝑃 ∖ I ) = { 𝐴 , ∪ ( dom ( 𝑃 ∖ I ) ∖ { 𝐴 } ) } ) | |
| 62 | 60 49 61 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ dom ( 𝑄 ∖ I ) ∧ 𝐴 ∈ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) ) → dom ( 𝑃 ∖ I ) = { 𝐴 , ∪ ( dom ( 𝑃 ∖ I ) ∖ { 𝐴 } ) } ) |
| 63 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ dom ( 𝑄 ∖ I ) ∧ 𝐴 ∈ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) ) → 𝐴 ∈ dom ( 𝑄 ∖ I ) ) | |
| 64 | f1ofn | ⊢ ( 𝑃 : 𝐷 –1-1-onto→ 𝐷 → 𝑃 Fn 𝐷 ) | |
| 65 | 20 64 | syl | ⊢ ( 𝜑 → 𝑃 Fn 𝐷 ) |
| 66 | 65 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ dom ( 𝑄 ∖ I ) ∧ 𝐴 ∈ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) ) → 𝑃 Fn 𝐷 ) |
| 67 | fimass | ⊢ ( 𝑃 : 𝐷 ⟶ 𝐷 → ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ⊆ 𝐷 ) | |
| 68 | 31 67 | syl | ⊢ ( 𝜑 → ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ⊆ 𝐷 ) |
| 69 | 68 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ dom ( 𝑄 ∖ I ) ∧ 𝐴 ∈ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) ) → ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ⊆ 𝐷 ) |
| 70 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ dom ( 𝑄 ∖ I ) ∧ 𝐴 ∈ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) ) → 𝐴 ∈ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) | |
| 71 | fnfvima | ⊢ ( ( 𝑃 Fn 𝐷 ∧ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ⊆ 𝐷 ∧ 𝐴 ∈ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) → ( 𝑃 ‘ 𝐴 ) ∈ ( 𝑃 “ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) ) | |
| 72 | 66 69 70 71 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ dom ( 𝑄 ∖ I ) ∧ 𝐴 ∈ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) ) → ( 𝑃 ‘ 𝐴 ) ∈ ( 𝑃 “ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) ) |
| 73 | difss | ⊢ ( 𝑃 ∖ I ) ⊆ 𝑃 | |
| 74 | dmss | ⊢ ( ( 𝑃 ∖ I ) ⊆ 𝑃 → dom ( 𝑃 ∖ I ) ⊆ dom 𝑃 ) | |
| 75 | 73 74 | ax-mp | ⊢ dom ( 𝑃 ∖ I ) ⊆ dom 𝑃 |
| 76 | f1odm | ⊢ ( 𝑃 : 𝐷 –1-1-onto→ 𝐷 → dom 𝑃 = 𝐷 ) | |
| 77 | 20 76 | syl | ⊢ ( 𝜑 → dom 𝑃 = 𝐷 ) |
| 78 | 75 77 | sseqtrid | ⊢ ( 𝜑 → dom ( 𝑃 ∖ I ) ⊆ 𝐷 ) |
| 79 | 78 5 | sseldd | ⊢ ( 𝜑 → 𝐴 ∈ 𝐷 ) |
| 80 | eqid | ⊢ dom ( 𝑃 ∖ I ) = dom ( 𝑃 ∖ I ) | |
| 81 | 6 1 80 | pmtrffv | ⊢ ( ( 𝑃 ∈ 𝑇 ∧ 𝐴 ∈ 𝐷 ) → ( 𝑃 ‘ 𝐴 ) = if ( 𝐴 ∈ dom ( 𝑃 ∖ I ) , ∪ ( dom ( 𝑃 ∖ I ) ∖ { 𝐴 } ) , 𝐴 ) ) |
| 82 | 3 79 81 | syl2anc | ⊢ ( 𝜑 → ( 𝑃 ‘ 𝐴 ) = if ( 𝐴 ∈ dom ( 𝑃 ∖ I ) , ∪ ( dom ( 𝑃 ∖ I ) ∖ { 𝐴 } ) , 𝐴 ) ) |
| 83 | 5 | iftrued | ⊢ ( 𝜑 → if ( 𝐴 ∈ dom ( 𝑃 ∖ I ) , ∪ ( dom ( 𝑃 ∖ I ) ∖ { 𝐴 } ) , 𝐴 ) = ∪ ( dom ( 𝑃 ∖ I ) ∖ { 𝐴 } ) ) |
| 84 | 82 83 | eqtrd | ⊢ ( 𝜑 → ( 𝑃 ‘ 𝐴 ) = ∪ ( dom ( 𝑃 ∖ I ) ∖ { 𝐴 } ) ) |
| 85 | 84 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ dom ( 𝑄 ∖ I ) ∧ 𝐴 ∈ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) ) → ( 𝑃 ‘ 𝐴 ) = ∪ ( dom ( 𝑃 ∖ I ) ∖ { 𝐴 } ) ) |
| 86 | imaco | ⊢ ( ( 𝑃 ∘ 𝑃 ) “ dom ( 𝑄 ∖ I ) ) = ( 𝑃 “ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) | |
| 87 | 28 | imaeq1d | ⊢ ( 𝜑 → ( ( 𝑃 ∘ 𝑃 ) “ dom ( 𝑄 ∖ I ) ) = ( ( I ↾ 𝐷 ) “ dom ( 𝑄 ∖ I ) ) ) |
| 88 | difss | ⊢ ( 𝑄 ∖ I ) ⊆ 𝑄 | |
| 89 | dmss | ⊢ ( ( 𝑄 ∖ I ) ⊆ 𝑄 → dom ( 𝑄 ∖ I ) ⊆ dom 𝑄 ) | |
| 90 | 88 89 | ax-mp | ⊢ dom ( 𝑄 ∖ I ) ⊆ dom 𝑄 |
| 91 | f1odm | ⊢ ( 𝑄 : 𝐷 –1-1-onto→ 𝐷 → dom 𝑄 = 𝐷 ) | |
| 92 | 90 91 | sseqtrid | ⊢ ( 𝑄 : 𝐷 –1-1-onto→ 𝐷 → dom ( 𝑄 ∖ I ) ⊆ 𝐷 ) |
| 93 | 33 92 | syl | ⊢ ( 𝜑 → dom ( 𝑄 ∖ I ) ⊆ 𝐷 ) |
| 94 | resiima | ⊢ ( dom ( 𝑄 ∖ I ) ⊆ 𝐷 → ( ( I ↾ 𝐷 ) “ dom ( 𝑄 ∖ I ) ) = dom ( 𝑄 ∖ I ) ) | |
| 95 | 93 94 | syl | ⊢ ( 𝜑 → ( ( I ↾ 𝐷 ) “ dom ( 𝑄 ∖ I ) ) = dom ( 𝑄 ∖ I ) ) |
| 96 | 87 95 | eqtrd | ⊢ ( 𝜑 → ( ( 𝑃 ∘ 𝑃 ) “ dom ( 𝑄 ∖ I ) ) = dom ( 𝑄 ∖ I ) ) |
| 97 | 86 96 | eqtr3id | ⊢ ( 𝜑 → ( 𝑃 “ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) = dom ( 𝑄 ∖ I ) ) |
| 98 | 97 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ dom ( 𝑄 ∖ I ) ∧ 𝐴 ∈ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) ) → ( 𝑃 “ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) = dom ( 𝑄 ∖ I ) ) |
| 99 | 72 85 98 | 3eltr3d | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ dom ( 𝑄 ∖ I ) ∧ 𝐴 ∈ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) ) → ∪ ( dom ( 𝑃 ∖ I ) ∖ { 𝐴 } ) ∈ dom ( 𝑄 ∖ I ) ) |
| 100 | 63 99 | prssd | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ dom ( 𝑄 ∖ I ) ∧ 𝐴 ∈ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) ) → { 𝐴 , ∪ ( dom ( 𝑃 ∖ I ) ∖ { 𝐴 } ) } ⊆ dom ( 𝑄 ∖ I ) ) |
| 101 | 62 100 | eqsstrd | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ dom ( 𝑄 ∖ I ) ∧ 𝐴 ∈ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) ) → dom ( 𝑃 ∖ I ) ⊆ dom ( 𝑄 ∖ I ) ) |
| 102 | 55 | ensymd | ⊢ ( 𝜑 → 2o ≈ dom ( 𝑄 ∖ I ) ) |
| 103 | entr | ⊢ ( ( dom ( 𝑃 ∖ I ) ≈ 2o ∧ 2o ≈ dom ( 𝑄 ∖ I ) ) → dom ( 𝑃 ∖ I ) ≈ dom ( 𝑄 ∖ I ) ) | |
| 104 | 48 102 103 | syl2anc | ⊢ ( 𝜑 → dom ( 𝑃 ∖ I ) ≈ dom ( 𝑄 ∖ I ) ) |
| 105 | 104 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ dom ( 𝑄 ∖ I ) ∧ 𝐴 ∈ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) ) → dom ( 𝑃 ∖ I ) ≈ dom ( 𝑄 ∖ I ) ) |
| 106 | fisseneq | ⊢ ( ( dom ( 𝑄 ∖ I ) ∈ Fin ∧ dom ( 𝑃 ∖ I ) ⊆ dom ( 𝑄 ∖ I ) ∧ dom ( 𝑃 ∖ I ) ≈ dom ( 𝑄 ∖ I ) ) → dom ( 𝑃 ∖ I ) = dom ( 𝑄 ∖ I ) ) | |
| 107 | 59 101 105 106 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ dom ( 𝑄 ∖ I ) ∧ 𝐴 ∈ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) ) → dom ( 𝑃 ∖ I ) = dom ( 𝑄 ∖ I ) ) |
| 108 | 107 | eqcomd | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ dom ( 𝑄 ∖ I ) ∧ 𝐴 ∈ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) ) → dom ( 𝑄 ∖ I ) = dom ( 𝑃 ∖ I ) ) |
| 109 | f1otrspeq | ⊢ ( ( ( 𝑃 : 𝐷 –1-1-onto→ 𝐷 ∧ 𝑄 : 𝐷 –1-1-onto→ 𝐷 ) ∧ ( dom ( 𝑃 ∖ I ) ≈ 2o ∧ dom ( 𝑄 ∖ I ) = dom ( 𝑃 ∖ I ) ) ) → 𝑃 = 𝑄 ) | |
| 110 | 44 45 49 108 109 | syl22anc | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ dom ( 𝑄 ∖ I ) ∧ 𝐴 ∈ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) ) → 𝑃 = 𝑄 ) |
| 111 | 110 | expr | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) → ( 𝐴 ∈ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) → 𝑃 = 𝑄 ) ) |
| 112 | 111 | necon3ad | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) → ( 𝑃 ≠ 𝑄 → ¬ 𝐴 ∈ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) ) |
| 113 | 112 | imp | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) ∧ 𝑃 ≠ 𝑄 ) → ¬ 𝐴 ∈ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) |
| 114 | 18 | difeq1d | ⊢ ( 𝜑 → ( ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∖ I ) = ( ( ( 𝑃 ∘ 𝑄 ) ∘ ◡ 𝑃 ) ∖ I ) ) |
| 115 | 114 | dmeqd | ⊢ ( 𝜑 → dom ( ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∖ I ) = dom ( ( ( 𝑃 ∘ 𝑄 ) ∘ ◡ 𝑃 ) ∖ I ) ) |
| 116 | f1omvdconj | ⊢ ( ( 𝑄 : 𝐷 ⟶ 𝐷 ∧ 𝑃 : 𝐷 –1-1-onto→ 𝐷 ) → dom ( ( ( 𝑃 ∘ 𝑄 ) ∘ ◡ 𝑃 ) ∖ I ) = ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) | |
| 117 | 35 20 116 | syl2anc | ⊢ ( 𝜑 → dom ( ( ( 𝑃 ∘ 𝑄 ) ∘ ◡ 𝑃 ) ∖ I ) = ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) |
| 118 | 115 117 | eqtrd | ⊢ ( 𝜑 → dom ( ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∖ I ) = ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) |
| 119 | 118 | eleq2d | ⊢ ( 𝜑 → ( 𝐴 ∈ dom ( ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∖ I ) ↔ 𝐴 ∈ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) ) |
| 120 | 119 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) ∧ 𝑃 ≠ 𝑄 ) → ( 𝐴 ∈ dom ( ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∖ I ) ↔ 𝐴 ∈ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) ) |
| 121 | 113 120 | mtbird | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) ∧ 𝑃 ≠ 𝑄 ) → ¬ 𝐴 ∈ dom ( ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∖ I ) ) |
| 122 | coeq1 | ⊢ ( 𝑟 = ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) → ( 𝑟 ∘ 𝑠 ) = ( ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∘ 𝑠 ) ) | |
| 123 | 122 | eqeq2d | ⊢ ( 𝑟 = ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) → ( ( 𝑃 ∘ 𝑄 ) = ( 𝑟 ∘ 𝑠 ) ↔ ( 𝑃 ∘ 𝑄 ) = ( ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∘ 𝑠 ) ) ) |
| 124 | difeq1 | ⊢ ( 𝑟 = ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) → ( 𝑟 ∖ I ) = ( ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∖ I ) ) | |
| 125 | 124 | dmeqd | ⊢ ( 𝑟 = ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) → dom ( 𝑟 ∖ I ) = dom ( ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∖ I ) ) |
| 126 | 125 | eleq2d | ⊢ ( 𝑟 = ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) → ( 𝐴 ∈ dom ( 𝑟 ∖ I ) ↔ 𝐴 ∈ dom ( ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∖ I ) ) ) |
| 127 | 126 | notbid | ⊢ ( 𝑟 = ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) → ( ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ↔ ¬ 𝐴 ∈ dom ( ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∖ I ) ) ) |
| 128 | 123 127 | 3anbi13d | ⊢ ( 𝑟 = ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) → ( ( ( 𝑃 ∘ 𝑄 ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ↔ ( ( 𝑃 ∘ 𝑄 ) = ( ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∖ I ) ) ) ) |
| 129 | coeq2 | ⊢ ( 𝑠 = 𝑃 → ( ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∘ 𝑠 ) = ( ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∘ 𝑃 ) ) | |
| 130 | 129 | eqeq2d | ⊢ ( 𝑠 = 𝑃 → ( ( 𝑃 ∘ 𝑄 ) = ( ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∘ 𝑠 ) ↔ ( 𝑃 ∘ 𝑄 ) = ( ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∘ 𝑃 ) ) ) |
| 131 | difeq1 | ⊢ ( 𝑠 = 𝑃 → ( 𝑠 ∖ I ) = ( 𝑃 ∖ I ) ) | |
| 132 | 131 | dmeqd | ⊢ ( 𝑠 = 𝑃 → dom ( 𝑠 ∖ I ) = dom ( 𝑃 ∖ I ) ) |
| 133 | 132 | eleq2d | ⊢ ( 𝑠 = 𝑃 → ( 𝐴 ∈ dom ( 𝑠 ∖ I ) ↔ 𝐴 ∈ dom ( 𝑃 ∖ I ) ) ) |
| 134 | 130 133 | 3anbi12d | ⊢ ( 𝑠 = 𝑃 → ( ( ( 𝑃 ∘ 𝑄 ) = ( ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∖ I ) ) ↔ ( ( 𝑃 ∘ 𝑄 ) = ( ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∘ 𝑃 ) ∧ 𝐴 ∈ dom ( 𝑃 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∖ I ) ) ) ) |
| 135 | 128 134 | rspc2ev | ⊢ ( ( ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∈ 𝑇 ∧ 𝑃 ∈ 𝑇 ∧ ( ( 𝑃 ∘ 𝑄 ) = ( ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∘ 𝑃 ) ∧ 𝐴 ∈ dom ( 𝑃 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∖ I ) ) ) → ∃ 𝑟 ∈ 𝑇 ∃ 𝑠 ∈ 𝑇 ( ( 𝑃 ∘ 𝑄 ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) |
| 136 | 24 25 42 43 121 135 | syl113anc | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) ∧ 𝑃 ≠ 𝑄 ) → ∃ 𝑟 ∈ 𝑇 ∃ 𝑠 ∈ 𝑇 ( ( 𝑃 ∘ 𝑄 ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) |
| 137 | 136 | olcd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) ∧ 𝑃 ≠ 𝑄 ) → ( ( 𝑃 ∘ 𝑄 ) = ( I ↾ 𝐷 ) ∨ ∃ 𝑟 ∈ 𝑇 ∃ 𝑠 ∈ 𝑇 ( ( 𝑃 ∘ 𝑄 ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) |
| 138 | 14 137 | pm2.61dane | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) → ( ( 𝑃 ∘ 𝑄 ) = ( I ↾ 𝐷 ) ∨ ∃ 𝑟 ∈ 𝑇 ∃ 𝑠 ∈ 𝑇 ( ( 𝑃 ∘ 𝑄 ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) |
| 139 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) → 𝑄 ∈ 𝑇 ) |
| 140 | coass | ⊢ ( ( 𝑄 ∘ 𝑃 ) ∘ 𝑄 ) = ( 𝑄 ∘ ( 𝑃 ∘ 𝑄 ) ) | |
| 141 | 6 1 | pmtrfcnv | ⊢ ( 𝑄 ∈ 𝑇 → ◡ 𝑄 = 𝑄 ) |
| 142 | 4 141 | syl | ⊢ ( 𝜑 → ◡ 𝑄 = 𝑄 ) |
| 143 | 142 | eqcomd | ⊢ ( 𝜑 → 𝑄 = ◡ 𝑄 ) |
| 144 | 143 | coeq2d | ⊢ ( 𝜑 → ( ( 𝑄 ∘ 𝑃 ) ∘ 𝑄 ) = ( ( 𝑄 ∘ 𝑃 ) ∘ ◡ 𝑄 ) ) |
| 145 | 140 144 | eqtr3id | ⊢ ( 𝜑 → ( 𝑄 ∘ ( 𝑃 ∘ 𝑄 ) ) = ( ( 𝑄 ∘ 𝑃 ) ∘ ◡ 𝑄 ) ) |
| 146 | 6 1 | pmtrfconj | ⊢ ( ( 𝑃 ∈ 𝑇 ∧ 𝑄 : 𝐷 –1-1-onto→ 𝐷 ) → ( ( 𝑄 ∘ 𝑃 ) ∘ ◡ 𝑄 ) ∈ 𝑇 ) |
| 147 | 3 33 146 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑄 ∘ 𝑃 ) ∘ ◡ 𝑄 ) ∈ 𝑇 ) |
| 148 | 145 147 | eqeltrd | ⊢ ( 𝜑 → ( 𝑄 ∘ ( 𝑃 ∘ 𝑄 ) ) ∈ 𝑇 ) |
| 149 | 148 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) → ( 𝑄 ∘ ( 𝑃 ∘ 𝑄 ) ) ∈ 𝑇 ) |
| 150 | 8 | coeq1d | ⊢ ( 𝜑 → ( ( 𝑄 ∘ 𝑄 ) ∘ ( 𝑃 ∘ 𝑄 ) ) = ( ( I ↾ 𝐷 ) ∘ ( 𝑃 ∘ 𝑄 ) ) ) |
| 151 | fcoi2 | ⊢ ( ( 𝑃 ∘ 𝑄 ) : 𝐷 ⟶ 𝐷 → ( ( I ↾ 𝐷 ) ∘ ( 𝑃 ∘ 𝑄 ) ) = ( 𝑃 ∘ 𝑄 ) ) | |
| 152 | 37 151 | syl | ⊢ ( 𝜑 → ( ( I ↾ 𝐷 ) ∘ ( 𝑃 ∘ 𝑄 ) ) = ( 𝑃 ∘ 𝑄 ) ) |
| 153 | 150 152 | eqtr2d | ⊢ ( 𝜑 → ( 𝑃 ∘ 𝑄 ) = ( ( 𝑄 ∘ 𝑄 ) ∘ ( 𝑃 ∘ 𝑄 ) ) ) |
| 154 | coass | ⊢ ( ( 𝑄 ∘ 𝑄 ) ∘ ( 𝑃 ∘ 𝑄 ) ) = ( 𝑄 ∘ ( 𝑄 ∘ ( 𝑃 ∘ 𝑄 ) ) ) | |
| 155 | 153 154 | eqtrdi | ⊢ ( 𝜑 → ( 𝑃 ∘ 𝑄 ) = ( 𝑄 ∘ ( 𝑄 ∘ ( 𝑃 ∘ 𝑄 ) ) ) ) |
| 156 | 155 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) → ( 𝑃 ∘ 𝑄 ) = ( 𝑄 ∘ ( 𝑄 ∘ ( 𝑃 ∘ 𝑄 ) ) ) ) |
| 157 | f1ofn | ⊢ ( 𝑄 : 𝐷 –1-1-onto→ 𝐷 → 𝑄 Fn 𝐷 ) | |
| 158 | 33 157 | syl | ⊢ ( 𝜑 → 𝑄 Fn 𝐷 ) |
| 159 | fnelnfp | ⊢ ( ( 𝑄 Fn 𝐷 ∧ 𝐴 ∈ 𝐷 ) → ( 𝐴 ∈ dom ( 𝑄 ∖ I ) ↔ ( 𝑄 ‘ 𝐴 ) ≠ 𝐴 ) ) | |
| 160 | 158 79 159 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 ∈ dom ( 𝑄 ∖ I ) ↔ ( 𝑄 ‘ 𝐴 ) ≠ 𝐴 ) ) |
| 161 | 160 | necon2bbid | ⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝐴 ) = 𝐴 ↔ ¬ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) ) |
| 162 | 161 | biimpar | ⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) → ( 𝑄 ‘ 𝐴 ) = 𝐴 ) |
| 163 | fnfvima | ⊢ ( ( 𝑄 Fn 𝐷 ∧ dom ( 𝑃 ∖ I ) ⊆ 𝐷 ∧ 𝐴 ∈ dom ( 𝑃 ∖ I ) ) → ( 𝑄 ‘ 𝐴 ) ∈ ( 𝑄 “ dom ( 𝑃 ∖ I ) ) ) | |
| 164 | 158 78 5 163 | syl3anc | ⊢ ( 𝜑 → ( 𝑄 ‘ 𝐴 ) ∈ ( 𝑄 “ dom ( 𝑃 ∖ I ) ) ) |
| 165 | 164 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) → ( 𝑄 ‘ 𝐴 ) ∈ ( 𝑄 “ dom ( 𝑃 ∖ I ) ) ) |
| 166 | 162 165 | eqeltrrd | ⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) → 𝐴 ∈ ( 𝑄 “ dom ( 𝑃 ∖ I ) ) ) |
| 167 | 145 | difeq1d | ⊢ ( 𝜑 → ( ( 𝑄 ∘ ( 𝑃 ∘ 𝑄 ) ) ∖ I ) = ( ( ( 𝑄 ∘ 𝑃 ) ∘ ◡ 𝑄 ) ∖ I ) ) |
| 168 | 167 | dmeqd | ⊢ ( 𝜑 → dom ( ( 𝑄 ∘ ( 𝑃 ∘ 𝑄 ) ) ∖ I ) = dom ( ( ( 𝑄 ∘ 𝑃 ) ∘ ◡ 𝑄 ) ∖ I ) ) |
| 169 | f1omvdconj | ⊢ ( ( 𝑃 : 𝐷 ⟶ 𝐷 ∧ 𝑄 : 𝐷 –1-1-onto→ 𝐷 ) → dom ( ( ( 𝑄 ∘ 𝑃 ) ∘ ◡ 𝑄 ) ∖ I ) = ( 𝑄 “ dom ( 𝑃 ∖ I ) ) ) | |
| 170 | 31 33 169 | syl2anc | ⊢ ( 𝜑 → dom ( ( ( 𝑄 ∘ 𝑃 ) ∘ ◡ 𝑄 ) ∖ I ) = ( 𝑄 “ dom ( 𝑃 ∖ I ) ) ) |
| 171 | 168 170 | eqtrd | ⊢ ( 𝜑 → dom ( ( 𝑄 ∘ ( 𝑃 ∘ 𝑄 ) ) ∖ I ) = ( 𝑄 “ dom ( 𝑃 ∖ I ) ) ) |
| 172 | 171 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) → dom ( ( 𝑄 ∘ ( 𝑃 ∘ 𝑄 ) ) ∖ I ) = ( 𝑄 “ dom ( 𝑃 ∖ I ) ) ) |
| 173 | 166 172 | eleqtrrd | ⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) → 𝐴 ∈ dom ( ( 𝑄 ∘ ( 𝑃 ∘ 𝑄 ) ) ∖ I ) ) |
| 174 | simpr | ⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) → ¬ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) | |
| 175 | coeq1 | ⊢ ( 𝑟 = 𝑄 → ( 𝑟 ∘ 𝑠 ) = ( 𝑄 ∘ 𝑠 ) ) | |
| 176 | 175 | eqeq2d | ⊢ ( 𝑟 = 𝑄 → ( ( 𝑃 ∘ 𝑄 ) = ( 𝑟 ∘ 𝑠 ) ↔ ( 𝑃 ∘ 𝑄 ) = ( 𝑄 ∘ 𝑠 ) ) ) |
| 177 | difeq1 | ⊢ ( 𝑟 = 𝑄 → ( 𝑟 ∖ I ) = ( 𝑄 ∖ I ) ) | |
| 178 | 177 | dmeqd | ⊢ ( 𝑟 = 𝑄 → dom ( 𝑟 ∖ I ) = dom ( 𝑄 ∖ I ) ) |
| 179 | 178 | eleq2d | ⊢ ( 𝑟 = 𝑄 → ( 𝐴 ∈ dom ( 𝑟 ∖ I ) ↔ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) ) |
| 180 | 179 | notbid | ⊢ ( 𝑟 = 𝑄 → ( ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ↔ ¬ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) ) |
| 181 | 176 180 | 3anbi13d | ⊢ ( 𝑟 = 𝑄 → ( ( ( 𝑃 ∘ 𝑄 ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ↔ ( ( 𝑃 ∘ 𝑄 ) = ( 𝑄 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) ) ) |
| 182 | coeq2 | ⊢ ( 𝑠 = ( 𝑄 ∘ ( 𝑃 ∘ 𝑄 ) ) → ( 𝑄 ∘ 𝑠 ) = ( 𝑄 ∘ ( 𝑄 ∘ ( 𝑃 ∘ 𝑄 ) ) ) ) | |
| 183 | 182 | eqeq2d | ⊢ ( 𝑠 = ( 𝑄 ∘ ( 𝑃 ∘ 𝑄 ) ) → ( ( 𝑃 ∘ 𝑄 ) = ( 𝑄 ∘ 𝑠 ) ↔ ( 𝑃 ∘ 𝑄 ) = ( 𝑄 ∘ ( 𝑄 ∘ ( 𝑃 ∘ 𝑄 ) ) ) ) ) |
| 184 | difeq1 | ⊢ ( 𝑠 = ( 𝑄 ∘ ( 𝑃 ∘ 𝑄 ) ) → ( 𝑠 ∖ I ) = ( ( 𝑄 ∘ ( 𝑃 ∘ 𝑄 ) ) ∖ I ) ) | |
| 185 | 184 | dmeqd | ⊢ ( 𝑠 = ( 𝑄 ∘ ( 𝑃 ∘ 𝑄 ) ) → dom ( 𝑠 ∖ I ) = dom ( ( 𝑄 ∘ ( 𝑃 ∘ 𝑄 ) ) ∖ I ) ) |
| 186 | 185 | eleq2d | ⊢ ( 𝑠 = ( 𝑄 ∘ ( 𝑃 ∘ 𝑄 ) ) → ( 𝐴 ∈ dom ( 𝑠 ∖ I ) ↔ 𝐴 ∈ dom ( ( 𝑄 ∘ ( 𝑃 ∘ 𝑄 ) ) ∖ I ) ) ) |
| 187 | 183 186 | 3anbi12d | ⊢ ( 𝑠 = ( 𝑄 ∘ ( 𝑃 ∘ 𝑄 ) ) → ( ( ( 𝑃 ∘ 𝑄 ) = ( 𝑄 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) ↔ ( ( 𝑃 ∘ 𝑄 ) = ( 𝑄 ∘ ( 𝑄 ∘ ( 𝑃 ∘ 𝑄 ) ) ) ∧ 𝐴 ∈ dom ( ( 𝑄 ∘ ( 𝑃 ∘ 𝑄 ) ) ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) ) ) |
| 188 | 181 187 | rspc2ev | ⊢ ( ( 𝑄 ∈ 𝑇 ∧ ( 𝑄 ∘ ( 𝑃 ∘ 𝑄 ) ) ∈ 𝑇 ∧ ( ( 𝑃 ∘ 𝑄 ) = ( 𝑄 ∘ ( 𝑄 ∘ ( 𝑃 ∘ 𝑄 ) ) ) ∧ 𝐴 ∈ dom ( ( 𝑄 ∘ ( 𝑃 ∘ 𝑄 ) ) ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) ) → ∃ 𝑟 ∈ 𝑇 ∃ 𝑠 ∈ 𝑇 ( ( 𝑃 ∘ 𝑄 ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) |
| 189 | 139 149 156 173 174 188 | syl113anc | ⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) → ∃ 𝑟 ∈ 𝑇 ∃ 𝑠 ∈ 𝑇 ( ( 𝑃 ∘ 𝑄 ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) |
| 190 | 189 | olcd | ⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) → ( ( 𝑃 ∘ 𝑄 ) = ( I ↾ 𝐷 ) ∨ ∃ 𝑟 ∈ 𝑇 ∃ 𝑠 ∈ 𝑇 ( ( 𝑃 ∘ 𝑄 ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) |
| 191 | 138 190 | pm2.61dan | ⊢ ( 𝜑 → ( ( 𝑃 ∘ 𝑄 ) = ( I ↾ 𝐷 ) ∨ ∃ 𝑟 ∈ 𝑇 ∃ 𝑠 ∈ 𝑇 ( ( 𝑃 ∘ 𝑄 ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) |