This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for psgnuni . It is impossible to shift a transposition off the end because if the active transposition is at the right end, it is the only transposition moving A in contradiction to this being a representation of the identity. (Contributed by Stefan O'Rear, 25-Aug-2015) (Revised by Mario Carneiro, 28-Feb-2016) (Proof shortened by AV, 12-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgnunilem2.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) | |
| psgnunilem2.t | ⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) | ||
| psgnunilem2.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) | ||
| psgnunilem2.w | ⊢ ( 𝜑 → 𝑊 ∈ Word 𝑇 ) | ||
| psgnunilem2.id | ⊢ ( 𝜑 → ( 𝐺 Σg 𝑊 ) = ( I ↾ 𝐷 ) ) | ||
| psgnunilem2.l | ⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) = 𝐿 ) | ||
| psgnunilem2.ix | ⊢ ( 𝜑 → 𝐼 ∈ ( 0 ..^ 𝐿 ) ) | ||
| psgnunilem2.a | ⊢ ( 𝜑 → 𝐴 ∈ dom ( ( 𝑊 ‘ 𝐼 ) ∖ I ) ) | ||
| psgnunilem2.al | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ 𝐼 ) ¬ 𝐴 ∈ dom ( ( 𝑊 ‘ 𝑘 ) ∖ I ) ) | ||
| Assertion | psgnunilem5 | ⊢ ( 𝜑 → ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgnunilem2.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) | |
| 2 | psgnunilem2.t | ⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) | |
| 3 | psgnunilem2.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) | |
| 4 | psgnunilem2.w | ⊢ ( 𝜑 → 𝑊 ∈ Word 𝑇 ) | |
| 5 | psgnunilem2.id | ⊢ ( 𝜑 → ( 𝐺 Σg 𝑊 ) = ( I ↾ 𝐷 ) ) | |
| 6 | psgnunilem2.l | ⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) = 𝐿 ) | |
| 7 | psgnunilem2.ix | ⊢ ( 𝜑 → 𝐼 ∈ ( 0 ..^ 𝐿 ) ) | |
| 8 | psgnunilem2.a | ⊢ ( 𝜑 → 𝐴 ∈ dom ( ( 𝑊 ‘ 𝐼 ) ∖ I ) ) | |
| 9 | psgnunilem2.al | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ 𝐼 ) ¬ 𝐴 ∈ dom ( ( 𝑊 ‘ 𝑘 ) ∖ I ) ) | |
| 10 | noel | ⊢ ¬ 𝐴 ∈ ∅ | |
| 11 | 5 | difeq1d | ⊢ ( 𝜑 → ( ( 𝐺 Σg 𝑊 ) ∖ I ) = ( ( I ↾ 𝐷 ) ∖ I ) ) |
| 12 | 11 | dmeqd | ⊢ ( 𝜑 → dom ( ( 𝐺 Σg 𝑊 ) ∖ I ) = dom ( ( I ↾ 𝐷 ) ∖ I ) ) |
| 13 | resss | ⊢ ( I ↾ 𝐷 ) ⊆ I | |
| 14 | ssdif0 | ⊢ ( ( I ↾ 𝐷 ) ⊆ I ↔ ( ( I ↾ 𝐷 ) ∖ I ) = ∅ ) | |
| 15 | 13 14 | mpbi | ⊢ ( ( I ↾ 𝐷 ) ∖ I ) = ∅ |
| 16 | 15 | dmeqi | ⊢ dom ( ( I ↾ 𝐷 ) ∖ I ) = dom ∅ |
| 17 | dm0 | ⊢ dom ∅ = ∅ | |
| 18 | 16 17 | eqtri | ⊢ dom ( ( I ↾ 𝐷 ) ∖ I ) = ∅ |
| 19 | 12 18 | eqtrdi | ⊢ ( 𝜑 → dom ( ( 𝐺 Σg 𝑊 ) ∖ I ) = ∅ ) |
| 20 | 19 | eleq2d | ⊢ ( 𝜑 → ( 𝐴 ∈ dom ( ( 𝐺 Σg 𝑊 ) ∖ I ) ↔ 𝐴 ∈ ∅ ) ) |
| 21 | 10 20 | mtbiri | ⊢ ( 𝜑 → ¬ 𝐴 ∈ dom ( ( 𝐺 Σg 𝑊 ) ∖ I ) ) |
| 22 | 1 | symggrp | ⊢ ( 𝐷 ∈ 𝑉 → 𝐺 ∈ Grp ) |
| 23 | grpmnd | ⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd ) | |
| 24 | 3 22 23 | 3syl | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 25 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 26 | 2 1 25 | symgtrf | ⊢ 𝑇 ⊆ ( Base ‘ 𝐺 ) |
| 27 | sswrd | ⊢ ( 𝑇 ⊆ ( Base ‘ 𝐺 ) → Word 𝑇 ⊆ Word ( Base ‘ 𝐺 ) ) | |
| 28 | 26 27 | mp1i | ⊢ ( 𝜑 → Word 𝑇 ⊆ Word ( Base ‘ 𝐺 ) ) |
| 29 | 28 4 | sseldd | ⊢ ( 𝜑 → 𝑊 ∈ Word ( Base ‘ 𝐺 ) ) |
| 30 | pfxcl | ⊢ ( 𝑊 ∈ Word ( Base ‘ 𝐺 ) → ( 𝑊 prefix 𝐼 ) ∈ Word ( Base ‘ 𝐺 ) ) | |
| 31 | 29 30 | syl | ⊢ ( 𝜑 → ( 𝑊 prefix 𝐼 ) ∈ Word ( Base ‘ 𝐺 ) ) |
| 32 | 25 | gsumwcl | ⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑊 prefix 𝐼 ) ∈ Word ( Base ‘ 𝐺 ) ) → ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∈ ( Base ‘ 𝐺 ) ) |
| 33 | 24 31 32 | syl2anc | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∈ ( Base ‘ 𝐺 ) ) |
| 34 | 1 25 | symgbasf1o | ⊢ ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∈ ( Base ‘ 𝐺 ) → ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) : 𝐷 –1-1-onto→ 𝐷 ) |
| 35 | 33 34 | syl | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) : 𝐷 –1-1-onto→ 𝐷 ) |
| 36 | 35 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐼 + 1 ) = 𝐿 ) → ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) : 𝐷 –1-1-onto→ 𝐷 ) |
| 37 | wrdf | ⊢ ( 𝑊 ∈ Word 𝑇 → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑇 ) | |
| 38 | 4 37 | syl | ⊢ ( 𝜑 → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑇 ) |
| 39 | 6 | oveq2d | ⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ( 0 ..^ 𝐿 ) ) |
| 40 | 7 39 | eleqtrrd | ⊢ ( 𝜑 → 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 41 | 38 40 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝑊 ‘ 𝐼 ) ∈ 𝑇 ) |
| 42 | 26 41 | sselid | ⊢ ( 𝜑 → ( 𝑊 ‘ 𝐼 ) ∈ ( Base ‘ 𝐺 ) ) |
| 43 | 1 25 | symgbasf1o | ⊢ ( ( 𝑊 ‘ 𝐼 ) ∈ ( Base ‘ 𝐺 ) → ( 𝑊 ‘ 𝐼 ) : 𝐷 –1-1-onto→ 𝐷 ) |
| 44 | 42 43 | syl | ⊢ ( 𝜑 → ( 𝑊 ‘ 𝐼 ) : 𝐷 –1-1-onto→ 𝐷 ) |
| 45 | 44 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐼 + 1 ) = 𝐿 ) → ( 𝑊 ‘ 𝐼 ) : 𝐷 –1-1-onto→ 𝐷 ) |
| 46 | 1 25 | symgsssg | ⊢ ( 𝐷 ∈ 𝑉 → { 𝑗 ∈ ( Base ‘ 𝐺 ) ∣ dom ( 𝑗 ∖ I ) ⊆ ( V ∖ { 𝐴 } ) } ∈ ( SubGrp ‘ 𝐺 ) ) |
| 47 | subgsubm | ⊢ ( { 𝑗 ∈ ( Base ‘ 𝐺 ) ∣ dom ( 𝑗 ∖ I ) ⊆ ( V ∖ { 𝐴 } ) } ∈ ( SubGrp ‘ 𝐺 ) → { 𝑗 ∈ ( Base ‘ 𝐺 ) ∣ dom ( 𝑗 ∖ I ) ⊆ ( V ∖ { 𝐴 } ) } ∈ ( SubMnd ‘ 𝐺 ) ) | |
| 48 | 3 46 47 | 3syl | ⊢ ( 𝜑 → { 𝑗 ∈ ( Base ‘ 𝐺 ) ∣ dom ( 𝑗 ∖ I ) ⊆ ( V ∖ { 𝐴 } ) } ∈ ( SubMnd ‘ 𝐺 ) ) |
| 49 | fzossfz | ⊢ ( 0 ..^ 𝐿 ) ⊆ ( 0 ... 𝐿 ) | |
| 50 | 49 7 | sselid | ⊢ ( 𝜑 → 𝐼 ∈ ( 0 ... 𝐿 ) ) |
| 51 | 6 | oveq2d | ⊢ ( 𝜑 → ( 0 ... ( ♯ ‘ 𝑊 ) ) = ( 0 ... 𝐿 ) ) |
| 52 | 50 51 | eleqtrrd | ⊢ ( 𝜑 → 𝐼 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
| 53 | pfxmpt | ⊢ ( ( 𝑊 ∈ Word 𝑇 ∧ 𝐼 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 prefix 𝐼 ) = ( 𝑠 ∈ ( 0 ..^ 𝐼 ) ↦ ( 𝑊 ‘ 𝑠 ) ) ) | |
| 54 | 4 52 53 | syl2anc | ⊢ ( 𝜑 → ( 𝑊 prefix 𝐼 ) = ( 𝑠 ∈ ( 0 ..^ 𝐼 ) ↦ ( 𝑊 ‘ 𝑠 ) ) ) |
| 55 | difeq1 | ⊢ ( 𝑗 = ( 𝑊 ‘ 𝑠 ) → ( 𝑗 ∖ I ) = ( ( 𝑊 ‘ 𝑠 ) ∖ I ) ) | |
| 56 | 55 | dmeqd | ⊢ ( 𝑗 = ( 𝑊 ‘ 𝑠 ) → dom ( 𝑗 ∖ I ) = dom ( ( 𝑊 ‘ 𝑠 ) ∖ I ) ) |
| 57 | 56 | sseq1d | ⊢ ( 𝑗 = ( 𝑊 ‘ 𝑠 ) → ( dom ( 𝑗 ∖ I ) ⊆ ( V ∖ { 𝐴 } ) ↔ dom ( ( 𝑊 ‘ 𝑠 ) ∖ I ) ⊆ ( V ∖ { 𝐴 } ) ) ) |
| 58 | disj2 | ⊢ ( ( dom ( ( 𝑊 ‘ 𝑠 ) ∖ I ) ∩ { 𝐴 } ) = ∅ ↔ dom ( ( 𝑊 ‘ 𝑠 ) ∖ I ) ⊆ ( V ∖ { 𝐴 } ) ) | |
| 59 | disjsn | ⊢ ( ( dom ( ( 𝑊 ‘ 𝑠 ) ∖ I ) ∩ { 𝐴 } ) = ∅ ↔ ¬ 𝐴 ∈ dom ( ( 𝑊 ‘ 𝑠 ) ∖ I ) ) | |
| 60 | 58 59 | bitr3i | ⊢ ( dom ( ( 𝑊 ‘ 𝑠 ) ∖ I ) ⊆ ( V ∖ { 𝐴 } ) ↔ ¬ 𝐴 ∈ dom ( ( 𝑊 ‘ 𝑠 ) ∖ I ) ) |
| 61 | 57 60 | bitrdi | ⊢ ( 𝑗 = ( 𝑊 ‘ 𝑠 ) → ( dom ( 𝑗 ∖ I ) ⊆ ( V ∖ { 𝐴 } ) ↔ ¬ 𝐴 ∈ dom ( ( 𝑊 ‘ 𝑠 ) ∖ I ) ) ) |
| 62 | elfzuz3 | ⊢ ( 𝐼 ∈ ( 0 ... 𝐿 ) → 𝐿 ∈ ( ℤ≥ ‘ 𝐼 ) ) | |
| 63 | 50 62 | syl | ⊢ ( 𝜑 → 𝐿 ∈ ( ℤ≥ ‘ 𝐼 ) ) |
| 64 | 6 63 | eqeltrd | ⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) ∈ ( ℤ≥ ‘ 𝐼 ) ) |
| 65 | fzoss2 | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ( ℤ≥ ‘ 𝐼 ) → ( 0 ..^ 𝐼 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | |
| 66 | 64 65 | syl | ⊢ ( 𝜑 → ( 0 ..^ 𝐼 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 67 | 66 | sselda | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 ..^ 𝐼 ) ) → 𝑠 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 68 | 38 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ‘ 𝑠 ) ∈ 𝑇 ) |
| 69 | 26 68 | sselid | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ‘ 𝑠 ) ∈ ( Base ‘ 𝐺 ) ) |
| 70 | 67 69 | syldan | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 ..^ 𝐼 ) ) → ( 𝑊 ‘ 𝑠 ) ∈ ( Base ‘ 𝐺 ) ) |
| 71 | fveq2 | ⊢ ( 𝑘 = 𝑠 → ( 𝑊 ‘ 𝑘 ) = ( 𝑊 ‘ 𝑠 ) ) | |
| 72 | 71 | difeq1d | ⊢ ( 𝑘 = 𝑠 → ( ( 𝑊 ‘ 𝑘 ) ∖ I ) = ( ( 𝑊 ‘ 𝑠 ) ∖ I ) ) |
| 73 | 72 | dmeqd | ⊢ ( 𝑘 = 𝑠 → dom ( ( 𝑊 ‘ 𝑘 ) ∖ I ) = dom ( ( 𝑊 ‘ 𝑠 ) ∖ I ) ) |
| 74 | 73 | eleq2d | ⊢ ( 𝑘 = 𝑠 → ( 𝐴 ∈ dom ( ( 𝑊 ‘ 𝑘 ) ∖ I ) ↔ 𝐴 ∈ dom ( ( 𝑊 ‘ 𝑠 ) ∖ I ) ) ) |
| 75 | 74 | notbid | ⊢ ( 𝑘 = 𝑠 → ( ¬ 𝐴 ∈ dom ( ( 𝑊 ‘ 𝑘 ) ∖ I ) ↔ ¬ 𝐴 ∈ dom ( ( 𝑊 ‘ 𝑠 ) ∖ I ) ) ) |
| 76 | 75 | cbvralvw | ⊢ ( ∀ 𝑘 ∈ ( 0 ..^ 𝐼 ) ¬ 𝐴 ∈ dom ( ( 𝑊 ‘ 𝑘 ) ∖ I ) ↔ ∀ 𝑠 ∈ ( 0 ..^ 𝐼 ) ¬ 𝐴 ∈ dom ( ( 𝑊 ‘ 𝑠 ) ∖ I ) ) |
| 77 | 9 76 | sylib | ⊢ ( 𝜑 → ∀ 𝑠 ∈ ( 0 ..^ 𝐼 ) ¬ 𝐴 ∈ dom ( ( 𝑊 ‘ 𝑠 ) ∖ I ) ) |
| 78 | 77 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 ..^ 𝐼 ) ) → ¬ 𝐴 ∈ dom ( ( 𝑊 ‘ 𝑠 ) ∖ I ) ) |
| 79 | 61 70 78 | elrabd | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 ..^ 𝐼 ) ) → ( 𝑊 ‘ 𝑠 ) ∈ { 𝑗 ∈ ( Base ‘ 𝐺 ) ∣ dom ( 𝑗 ∖ I ) ⊆ ( V ∖ { 𝐴 } ) } ) |
| 80 | 54 79 | fmpt3d | ⊢ ( 𝜑 → ( 𝑊 prefix 𝐼 ) : ( 0 ..^ 𝐼 ) ⟶ { 𝑗 ∈ ( Base ‘ 𝐺 ) ∣ dom ( 𝑗 ∖ I ) ⊆ ( V ∖ { 𝐴 } ) } ) |
| 81 | 80 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐼 + 1 ) = 𝐿 ) → ( 𝑊 prefix 𝐼 ) : ( 0 ..^ 𝐼 ) ⟶ { 𝑗 ∈ ( Base ‘ 𝐺 ) ∣ dom ( 𝑗 ∖ I ) ⊆ ( V ∖ { 𝐴 } ) } ) |
| 82 | iswrdi | ⊢ ( ( 𝑊 prefix 𝐼 ) : ( 0 ..^ 𝐼 ) ⟶ { 𝑗 ∈ ( Base ‘ 𝐺 ) ∣ dom ( 𝑗 ∖ I ) ⊆ ( V ∖ { 𝐴 } ) } → ( 𝑊 prefix 𝐼 ) ∈ Word { 𝑗 ∈ ( Base ‘ 𝐺 ) ∣ dom ( 𝑗 ∖ I ) ⊆ ( V ∖ { 𝐴 } ) } ) | |
| 83 | 81 82 | syl | ⊢ ( ( 𝜑 ∧ ( 𝐼 + 1 ) = 𝐿 ) → ( 𝑊 prefix 𝐼 ) ∈ Word { 𝑗 ∈ ( Base ‘ 𝐺 ) ∣ dom ( 𝑗 ∖ I ) ⊆ ( V ∖ { 𝐴 } ) } ) |
| 84 | gsumwsubmcl | ⊢ ( ( { 𝑗 ∈ ( Base ‘ 𝐺 ) ∣ dom ( 𝑗 ∖ I ) ⊆ ( V ∖ { 𝐴 } ) } ∈ ( SubMnd ‘ 𝐺 ) ∧ ( 𝑊 prefix 𝐼 ) ∈ Word { 𝑗 ∈ ( Base ‘ 𝐺 ) ∣ dom ( 𝑗 ∖ I ) ⊆ ( V ∖ { 𝐴 } ) } ) → ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∈ { 𝑗 ∈ ( Base ‘ 𝐺 ) ∣ dom ( 𝑗 ∖ I ) ⊆ ( V ∖ { 𝐴 } ) } ) | |
| 85 | 48 83 84 | syl2an2r | ⊢ ( ( 𝜑 ∧ ( 𝐼 + 1 ) = 𝐿 ) → ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∈ { 𝑗 ∈ ( Base ‘ 𝐺 ) ∣ dom ( 𝑗 ∖ I ) ⊆ ( V ∖ { 𝐴 } ) } ) |
| 86 | difeq1 | ⊢ ( 𝑗 = ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) → ( 𝑗 ∖ I ) = ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∖ I ) ) | |
| 87 | 86 | dmeqd | ⊢ ( 𝑗 = ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) → dom ( 𝑗 ∖ I ) = dom ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∖ I ) ) |
| 88 | 87 | sseq1d | ⊢ ( 𝑗 = ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) → ( dom ( 𝑗 ∖ I ) ⊆ ( V ∖ { 𝐴 } ) ↔ dom ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∖ I ) ⊆ ( V ∖ { 𝐴 } ) ) ) |
| 89 | 88 | elrab | ⊢ ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∈ { 𝑗 ∈ ( Base ‘ 𝐺 ) ∣ dom ( 𝑗 ∖ I ) ⊆ ( V ∖ { 𝐴 } ) } ↔ ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∈ ( Base ‘ 𝐺 ) ∧ dom ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∖ I ) ⊆ ( V ∖ { 𝐴 } ) ) ) |
| 90 | 89 | simprbi | ⊢ ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∈ { 𝑗 ∈ ( Base ‘ 𝐺 ) ∣ dom ( 𝑗 ∖ I ) ⊆ ( V ∖ { 𝐴 } ) } → dom ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∖ I ) ⊆ ( V ∖ { 𝐴 } ) ) |
| 91 | disj2 | ⊢ ( ( dom ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∖ I ) ∩ { 𝐴 } ) = ∅ ↔ dom ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∖ I ) ⊆ ( V ∖ { 𝐴 } ) ) | |
| 92 | disjsn | ⊢ ( ( dom ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∖ I ) ∩ { 𝐴 } ) = ∅ ↔ ¬ 𝐴 ∈ dom ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∖ I ) ) | |
| 93 | 91 92 | bitr3i | ⊢ ( dom ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∖ I ) ⊆ ( V ∖ { 𝐴 } ) ↔ ¬ 𝐴 ∈ dom ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∖ I ) ) |
| 94 | 90 93 | sylib | ⊢ ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∈ { 𝑗 ∈ ( Base ‘ 𝐺 ) ∣ dom ( 𝑗 ∖ I ) ⊆ ( V ∖ { 𝐴 } ) } → ¬ 𝐴 ∈ dom ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∖ I ) ) |
| 95 | 85 94 | syl | ⊢ ( ( 𝜑 ∧ ( 𝐼 + 1 ) = 𝐿 ) → ¬ 𝐴 ∈ dom ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∖ I ) ) |
| 96 | 8 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐼 + 1 ) = 𝐿 ) → 𝐴 ∈ dom ( ( 𝑊 ‘ 𝐼 ) ∖ I ) ) |
| 97 | 95 96 | jca | ⊢ ( ( 𝜑 ∧ ( 𝐼 + 1 ) = 𝐿 ) → ( ¬ 𝐴 ∈ dom ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∖ I ) ∧ 𝐴 ∈ dom ( ( 𝑊 ‘ 𝐼 ) ∖ I ) ) ) |
| 98 | 97 | olcd | ⊢ ( ( 𝜑 ∧ ( 𝐼 + 1 ) = 𝐿 ) → ( ( 𝐴 ∈ dom ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∖ I ) ∧ ¬ 𝐴 ∈ dom ( ( 𝑊 ‘ 𝐼 ) ∖ I ) ) ∨ ( ¬ 𝐴 ∈ dom ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∖ I ) ∧ 𝐴 ∈ dom ( ( 𝑊 ‘ 𝐼 ) ∖ I ) ) ) ) |
| 99 | excxor | ⊢ ( ( 𝐴 ∈ dom ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∖ I ) ⊻ 𝐴 ∈ dom ( ( 𝑊 ‘ 𝐼 ) ∖ I ) ) ↔ ( ( 𝐴 ∈ dom ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∖ I ) ∧ ¬ 𝐴 ∈ dom ( ( 𝑊 ‘ 𝐼 ) ∖ I ) ) ∨ ( ¬ 𝐴 ∈ dom ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∖ I ) ∧ 𝐴 ∈ dom ( ( 𝑊 ‘ 𝐼 ) ∖ I ) ) ) ) | |
| 100 | 98 99 | sylibr | ⊢ ( ( 𝜑 ∧ ( 𝐼 + 1 ) = 𝐿 ) → ( 𝐴 ∈ dom ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∖ I ) ⊻ 𝐴 ∈ dom ( ( 𝑊 ‘ 𝐼 ) ∖ I ) ) ) |
| 101 | f1omvdco3 | ⊢ ( ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) : 𝐷 –1-1-onto→ 𝐷 ∧ ( 𝑊 ‘ 𝐼 ) : 𝐷 –1-1-onto→ 𝐷 ∧ ( 𝐴 ∈ dom ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∖ I ) ⊻ 𝐴 ∈ dom ( ( 𝑊 ‘ 𝐼 ) ∖ I ) ) ) → 𝐴 ∈ dom ( ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∘ ( 𝑊 ‘ 𝐼 ) ) ∖ I ) ) | |
| 102 | 36 45 100 101 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝐼 + 1 ) = 𝐿 ) → 𝐴 ∈ dom ( ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∘ ( 𝑊 ‘ 𝐼 ) ) ∖ I ) ) |
| 103 | elfzo0 | ⊢ ( 𝐼 ∈ ( 0 ..^ 𝐿 ) ↔ ( 𝐼 ∈ ℕ0 ∧ 𝐿 ∈ ℕ ∧ 𝐼 < 𝐿 ) ) | |
| 104 | 103 | simp2bi | ⊢ ( 𝐼 ∈ ( 0 ..^ 𝐿 ) → 𝐿 ∈ ℕ ) |
| 105 | 7 104 | syl | ⊢ ( 𝜑 → 𝐿 ∈ ℕ ) |
| 106 | 6 105 | eqeltrd | ⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) ∈ ℕ ) |
| 107 | wrdfin | ⊢ ( 𝑊 ∈ Word 𝑇 → 𝑊 ∈ Fin ) | |
| 108 | hashnncl | ⊢ ( 𝑊 ∈ Fin → ( ( ♯ ‘ 𝑊 ) ∈ ℕ ↔ 𝑊 ≠ ∅ ) ) | |
| 109 | 4 107 108 | 3syl | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝑊 ) ∈ ℕ ↔ 𝑊 ≠ ∅ ) ) |
| 110 | 106 109 | mpbid | ⊢ ( 𝜑 → 𝑊 ≠ ∅ ) |
| 111 | 110 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐼 + 1 ) = 𝐿 ) → 𝑊 ≠ ∅ ) |
| 112 | pfxlswccat | ⊢ ( ( 𝑊 ∈ Word 𝑇 ∧ 𝑊 ≠ ∅ ) → ( ( 𝑊 prefix ( ( ♯ ‘ 𝑊 ) − 1 ) ) ++ 〈“ ( lastS ‘ 𝑊 ) ”〉 ) = 𝑊 ) | |
| 113 | 112 | eqcomd | ⊢ ( ( 𝑊 ∈ Word 𝑇 ∧ 𝑊 ≠ ∅ ) → 𝑊 = ( ( 𝑊 prefix ( ( ♯ ‘ 𝑊 ) − 1 ) ) ++ 〈“ ( lastS ‘ 𝑊 ) ”〉 ) ) |
| 114 | 4 111 113 | syl2an2r | ⊢ ( ( 𝜑 ∧ ( 𝐼 + 1 ) = 𝐿 ) → 𝑊 = ( ( 𝑊 prefix ( ( ♯ ‘ 𝑊 ) − 1 ) ) ++ 〈“ ( lastS ‘ 𝑊 ) ”〉 ) ) |
| 115 | 6 | oveq1d | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝑊 ) − 1 ) = ( 𝐿 − 1 ) ) |
| 116 | 115 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐼 + 1 ) = 𝐿 ) → ( ( ♯ ‘ 𝑊 ) − 1 ) = ( 𝐿 − 1 ) ) |
| 117 | 105 | nncnd | ⊢ ( 𝜑 → 𝐿 ∈ ℂ ) |
| 118 | 1cnd | ⊢ ( 𝜑 → 1 ∈ ℂ ) | |
| 119 | elfzoelz | ⊢ ( 𝐼 ∈ ( 0 ..^ 𝐿 ) → 𝐼 ∈ ℤ ) | |
| 120 | 7 119 | syl | ⊢ ( 𝜑 → 𝐼 ∈ ℤ ) |
| 121 | 120 | zcnd | ⊢ ( 𝜑 → 𝐼 ∈ ℂ ) |
| 122 | 117 118 121 | subadd2d | ⊢ ( 𝜑 → ( ( 𝐿 − 1 ) = 𝐼 ↔ ( 𝐼 + 1 ) = 𝐿 ) ) |
| 123 | 122 | biimpar | ⊢ ( ( 𝜑 ∧ ( 𝐼 + 1 ) = 𝐿 ) → ( 𝐿 − 1 ) = 𝐼 ) |
| 124 | 116 123 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝐼 + 1 ) = 𝐿 ) → ( ( ♯ ‘ 𝑊 ) − 1 ) = 𝐼 ) |
| 125 | oveq2 | ⊢ ( ( ( ♯ ‘ 𝑊 ) − 1 ) = 𝐼 → ( 𝑊 prefix ( ( ♯ ‘ 𝑊 ) − 1 ) ) = ( 𝑊 prefix 𝐼 ) ) | |
| 126 | 125 | adantl | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) − 1 ) = 𝐼 ) → ( 𝑊 prefix ( ( ♯ ‘ 𝑊 ) − 1 ) ) = ( 𝑊 prefix 𝐼 ) ) |
| 127 | lsw | ⊢ ( 𝑊 ∈ Word 𝑇 → ( lastS ‘ 𝑊 ) = ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) | |
| 128 | 4 127 | syl | ⊢ ( 𝜑 → ( lastS ‘ 𝑊 ) = ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
| 129 | fveq2 | ⊢ ( ( ( ♯ ‘ 𝑊 ) − 1 ) = 𝐼 → ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) = ( 𝑊 ‘ 𝐼 ) ) | |
| 130 | 128 129 | sylan9eq | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) − 1 ) = 𝐼 ) → ( lastS ‘ 𝑊 ) = ( 𝑊 ‘ 𝐼 ) ) |
| 131 | 130 | s1eqd | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) − 1 ) = 𝐼 ) → 〈“ ( lastS ‘ 𝑊 ) ”〉 = 〈“ ( 𝑊 ‘ 𝐼 ) ”〉 ) |
| 132 | 126 131 | oveq12d | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) − 1 ) = 𝐼 ) → ( ( 𝑊 prefix ( ( ♯ ‘ 𝑊 ) − 1 ) ) ++ 〈“ ( lastS ‘ 𝑊 ) ”〉 ) = ( ( 𝑊 prefix 𝐼 ) ++ 〈“ ( 𝑊 ‘ 𝐼 ) ”〉 ) ) |
| 133 | 124 132 | syldan | ⊢ ( ( 𝜑 ∧ ( 𝐼 + 1 ) = 𝐿 ) → ( ( 𝑊 prefix ( ( ♯ ‘ 𝑊 ) − 1 ) ) ++ 〈“ ( lastS ‘ 𝑊 ) ”〉 ) = ( ( 𝑊 prefix 𝐼 ) ++ 〈“ ( 𝑊 ‘ 𝐼 ) ”〉 ) ) |
| 134 | 114 133 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝐼 + 1 ) = 𝐿 ) → 𝑊 = ( ( 𝑊 prefix 𝐼 ) ++ 〈“ ( 𝑊 ‘ 𝐼 ) ”〉 ) ) |
| 135 | 134 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝐼 + 1 ) = 𝐿 ) → ( 𝐺 Σg 𝑊 ) = ( 𝐺 Σg ( ( 𝑊 prefix 𝐼 ) ++ 〈“ ( 𝑊 ‘ 𝐼 ) ”〉 ) ) ) |
| 136 | 42 | s1cld | ⊢ ( 𝜑 → 〈“ ( 𝑊 ‘ 𝐼 ) ”〉 ∈ Word ( Base ‘ 𝐺 ) ) |
| 137 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 138 | 25 137 | gsumccat | ⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑊 prefix 𝐼 ) ∈ Word ( Base ‘ 𝐺 ) ∧ 〈“ ( 𝑊 ‘ 𝐼 ) ”〉 ∈ Word ( Base ‘ 𝐺 ) ) → ( 𝐺 Σg ( ( 𝑊 prefix 𝐼 ) ++ 〈“ ( 𝑊 ‘ 𝐼 ) ”〉 ) ) = ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg 〈“ ( 𝑊 ‘ 𝐼 ) ”〉 ) ) ) |
| 139 | 24 31 136 138 | syl3anc | ⊢ ( 𝜑 → ( 𝐺 Σg ( ( 𝑊 prefix 𝐼 ) ++ 〈“ ( 𝑊 ‘ 𝐼 ) ”〉 ) ) = ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg 〈“ ( 𝑊 ‘ 𝐼 ) ”〉 ) ) ) |
| 140 | 139 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐼 + 1 ) = 𝐿 ) → ( 𝐺 Σg ( ( 𝑊 prefix 𝐼 ) ++ 〈“ ( 𝑊 ‘ 𝐼 ) ”〉 ) ) = ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg 〈“ ( 𝑊 ‘ 𝐼 ) ”〉 ) ) ) |
| 141 | 25 | gsumws1 | ⊢ ( ( 𝑊 ‘ 𝐼 ) ∈ ( Base ‘ 𝐺 ) → ( 𝐺 Σg 〈“ ( 𝑊 ‘ 𝐼 ) ”〉 ) = ( 𝑊 ‘ 𝐼 ) ) |
| 142 | 42 141 | syl | ⊢ ( 𝜑 → ( 𝐺 Σg 〈“ ( 𝑊 ‘ 𝐼 ) ”〉 ) = ( 𝑊 ‘ 𝐼 ) ) |
| 143 | 142 | oveq2d | ⊢ ( 𝜑 → ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg 〈“ ( 𝑊 ‘ 𝐼 ) ”〉 ) ) = ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ( +g ‘ 𝐺 ) ( 𝑊 ‘ 𝐼 ) ) ) |
| 144 | 1 25 137 | symgov | ⊢ ( ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∈ ( Base ‘ 𝐺 ) ∧ ( 𝑊 ‘ 𝐼 ) ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ( +g ‘ 𝐺 ) ( 𝑊 ‘ 𝐼 ) ) = ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∘ ( 𝑊 ‘ 𝐼 ) ) ) |
| 145 | 33 42 144 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ( +g ‘ 𝐺 ) ( 𝑊 ‘ 𝐼 ) ) = ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∘ ( 𝑊 ‘ 𝐼 ) ) ) |
| 146 | 143 145 | eqtrd | ⊢ ( 𝜑 → ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg 〈“ ( 𝑊 ‘ 𝐼 ) ”〉 ) ) = ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∘ ( 𝑊 ‘ 𝐼 ) ) ) |
| 147 | 146 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐼 + 1 ) = 𝐿 ) → ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg 〈“ ( 𝑊 ‘ 𝐼 ) ”〉 ) ) = ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∘ ( 𝑊 ‘ 𝐼 ) ) ) |
| 148 | 135 140 147 | 3eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝐼 + 1 ) = 𝐿 ) → ( 𝐺 Σg 𝑊 ) = ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∘ ( 𝑊 ‘ 𝐼 ) ) ) |
| 149 | 148 | difeq1d | ⊢ ( ( 𝜑 ∧ ( 𝐼 + 1 ) = 𝐿 ) → ( ( 𝐺 Σg 𝑊 ) ∖ I ) = ( ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∘ ( 𝑊 ‘ 𝐼 ) ) ∖ I ) ) |
| 150 | 149 | dmeqd | ⊢ ( ( 𝜑 ∧ ( 𝐼 + 1 ) = 𝐿 ) → dom ( ( 𝐺 Σg 𝑊 ) ∖ I ) = dom ( ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∘ ( 𝑊 ‘ 𝐼 ) ) ∖ I ) ) |
| 151 | 102 150 | eleqtrrd | ⊢ ( ( 𝜑 ∧ ( 𝐼 + 1 ) = 𝐿 ) → 𝐴 ∈ dom ( ( 𝐺 Σg 𝑊 ) ∖ I ) ) |
| 152 | 21 151 | mtand | ⊢ ( 𝜑 → ¬ ( 𝐼 + 1 ) = 𝐿 ) |
| 153 | fzostep1 | ⊢ ( 𝐼 ∈ ( 0 ..^ 𝐿 ) → ( ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∨ ( 𝐼 + 1 ) = 𝐿 ) ) | |
| 154 | 7 153 | syl | ⊢ ( 𝜑 → ( ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∨ ( 𝐼 + 1 ) = 𝐿 ) ) |
| 155 | 154 | ord | ⊢ ( 𝜑 → ( ¬ ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) → ( 𝐼 + 1 ) = 𝐿 ) ) |
| 156 | 152 155 | mt3d | ⊢ ( 𝜑 → ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) ) |