This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a finite set of sequential nonnegative integers. (Contributed by NM, 16-Sep-2005) (Revised by Mario Carneiro, 28-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfz2nn0 | ⊢ ( 𝐾 ∈ ( 0 ... 𝑁 ) ↔ ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0uz | ⊢ ( 𝐾 ∈ ℕ0 ↔ 𝐾 ∈ ( ℤ≥ ‘ 0 ) ) | |
| 2 | 1 | anbi1i | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) ↔ ( 𝐾 ∈ ( ℤ≥ ‘ 0 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) ) |
| 3 | eluznn0 | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 𝑁 ∈ ℕ0 ) | |
| 4 | eluzle | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) → 𝐾 ≤ 𝑁 ) | |
| 5 | 4 | adantl | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 𝐾 ≤ 𝑁 ) |
| 6 | 3 5 | jca | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁 ) ) |
| 7 | nn0z | ⊢ ( 𝐾 ∈ ℕ0 → 𝐾 ∈ ℤ ) | |
| 8 | nn0z | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) | |
| 9 | eluz | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ↔ 𝐾 ≤ 𝑁 ) ) | |
| 10 | 7 8 9 | syl2an | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ↔ 𝐾 ≤ 𝑁 ) ) |
| 11 | 10 | biimprd | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝐾 ≤ 𝑁 → 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) ) |
| 12 | 11 | impr | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ ( 𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) |
| 13 | 6 12 | impbida | ⊢ ( 𝐾 ∈ ℕ0 → ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ↔ ( 𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁 ) ) ) |
| 14 | 13 | pm5.32i | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) ↔ ( 𝐾 ∈ ℕ0 ∧ ( 𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁 ) ) ) |
| 15 | 2 14 | bitr3i | ⊢ ( ( 𝐾 ∈ ( ℤ≥ ‘ 0 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) ↔ ( 𝐾 ∈ ℕ0 ∧ ( 𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁 ) ) ) |
| 16 | elfzuzb | ⊢ ( 𝐾 ∈ ( 0 ... 𝑁 ) ↔ ( 𝐾 ∈ ( ℤ≥ ‘ 0 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) ) | |
| 17 | 3anass | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁 ) ↔ ( 𝐾 ∈ ℕ0 ∧ ( 𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁 ) ) ) | |
| 18 | 15 16 17 | 3bitr4i | ⊢ ( 𝐾 ∈ ( 0 ... 𝑁 ) ↔ ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁 ) ) |