This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for psgnuni . Any nonempty representation of the identity can be incrementally transformed into a representation two shorter. (Contributed by Stefan O'Rear, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgnunilem3.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) | |
| psgnunilem3.t | ⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) | ||
| psgnunilem3.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) | ||
| psgnunilem3.w1 | ⊢ ( 𝜑 → 𝑊 ∈ Word 𝑇 ) | ||
| psgnunilem3.l | ⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) = 𝐿 ) | ||
| psgnunilem3.w2 | ⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) ∈ ℕ ) | ||
| psgnunilem3.w3 | ⊢ ( 𝜑 → ( 𝐺 Σg 𝑊 ) = ( I ↾ 𝐷 ) ) | ||
| psgnunilem3.in | ⊢ ( 𝜑 → ¬ ∃ 𝑥 ∈ Word 𝑇 ( ( ♯ ‘ 𝑥 ) = ( 𝐿 − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) | ||
| Assertion | psgnunilem3 | ⊢ ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgnunilem3.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) | |
| 2 | psgnunilem3.t | ⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) | |
| 3 | psgnunilem3.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) | |
| 4 | psgnunilem3.w1 | ⊢ ( 𝜑 → 𝑊 ∈ Word 𝑇 ) | |
| 5 | psgnunilem3.l | ⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) = 𝐿 ) | |
| 6 | psgnunilem3.w2 | ⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) ∈ ℕ ) | |
| 7 | psgnunilem3.w3 | ⊢ ( 𝜑 → ( 𝐺 Σg 𝑊 ) = ( I ↾ 𝐷 ) ) | |
| 8 | psgnunilem3.in | ⊢ ( 𝜑 → ¬ ∃ 𝑥 ∈ Word 𝑇 ( ( ♯ ‘ 𝑥 ) = ( 𝐿 − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) | |
| 9 | 5 6 | eqeltrrd | ⊢ ( 𝜑 → 𝐿 ∈ ℕ ) |
| 10 | 9 | nnnn0d | ⊢ ( 𝜑 → 𝐿 ∈ ℕ0 ) |
| 11 | wrdf | ⊢ ( 𝑊 ∈ Word 𝑇 → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑇 ) | |
| 12 | 4 11 | syl | ⊢ ( 𝜑 → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑇 ) |
| 13 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 14 | 13 | a1i | ⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
| 15 | 9 | nngt0d | ⊢ ( 𝜑 → 0 < 𝐿 ) |
| 16 | elfzo0 | ⊢ ( 0 ∈ ( 0 ..^ 𝐿 ) ↔ ( 0 ∈ ℕ0 ∧ 𝐿 ∈ ℕ ∧ 0 < 𝐿 ) ) | |
| 17 | 14 9 15 16 | syl3anbrc | ⊢ ( 𝜑 → 0 ∈ ( 0 ..^ 𝐿 ) ) |
| 18 | 5 | oveq2d | ⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ( 0 ..^ 𝐿 ) ) |
| 19 | 17 18 | eleqtrrd | ⊢ ( 𝜑 → 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 20 | 12 19 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝑊 ‘ 0 ) ∈ 𝑇 ) |
| 21 | eqid | ⊢ ( pmTrsp ‘ 𝐷 ) = ( pmTrsp ‘ 𝐷 ) | |
| 22 | 21 2 | pmtrfmvdn0 | ⊢ ( ( 𝑊 ‘ 0 ) ∈ 𝑇 → dom ( ( 𝑊 ‘ 0 ) ∖ I ) ≠ ∅ ) |
| 23 | 20 22 | syl | ⊢ ( 𝜑 → dom ( ( 𝑊 ‘ 0 ) ∖ I ) ≠ ∅ ) |
| 24 | n0 | ⊢ ( dom ( ( 𝑊 ‘ 0 ) ∖ I ) ≠ ∅ ↔ ∃ 𝑒 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) | |
| 25 | 23 24 | sylib | ⊢ ( 𝜑 → ∃ 𝑒 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) |
| 26 | fzonel | ⊢ ¬ 𝐿 ∈ ( 0 ..^ 𝐿 ) | |
| 27 | simpr1 | ⊢ ( ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 𝐿 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝐿 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝐿 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) → 𝐿 ∈ ( 0 ..^ 𝐿 ) ) | |
| 28 | 26 27 | mto | ⊢ ¬ ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 𝐿 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝐿 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝐿 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) |
| 29 | 28 | a1i | ⊢ ( 𝑤 ∈ Word 𝑇 → ¬ ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 𝐿 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝐿 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝐿 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ) |
| 30 | 29 | nrex | ⊢ ¬ ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 𝐿 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝐿 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝐿 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) |
| 31 | eleq1 | ⊢ ( 𝑎 = 0 → ( 𝑎 ∈ ( 0 ..^ 𝐿 ) ↔ 0 ∈ ( 0 ..^ 𝐿 ) ) ) | |
| 32 | fveq2 | ⊢ ( 𝑎 = 0 → ( 𝑤 ‘ 𝑎 ) = ( 𝑤 ‘ 0 ) ) | |
| 33 | 32 | difeq1d | ⊢ ( 𝑎 = 0 → ( ( 𝑤 ‘ 𝑎 ) ∖ I ) = ( ( 𝑤 ‘ 0 ) ∖ I ) ) |
| 34 | 33 | dmeqd | ⊢ ( 𝑎 = 0 → dom ( ( 𝑤 ‘ 𝑎 ) ∖ I ) = dom ( ( 𝑤 ‘ 0 ) ∖ I ) ) |
| 35 | 34 | eleq2d | ⊢ ( 𝑎 = 0 → ( 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑎 ) ∖ I ) ↔ 𝑒 ∈ dom ( ( 𝑤 ‘ 0 ) ∖ I ) ) ) |
| 36 | oveq2 | ⊢ ( 𝑎 = 0 → ( 0 ..^ 𝑎 ) = ( 0 ..^ 0 ) ) | |
| 37 | 36 | raleqdv | ⊢ ( 𝑎 = 0 → ( ∀ 𝑐 ∈ ( 0 ..^ 𝑎 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ↔ ∀ 𝑐 ∈ ( 0 ..^ 0 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) |
| 38 | 31 35 37 | 3anbi123d | ⊢ ( 𝑎 = 0 → ( ( 𝑎 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑎 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝑎 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ↔ ( 0 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 0 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 0 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ) |
| 39 | 38 | anbi2d | ⊢ ( 𝑎 = 0 → ( ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 𝑎 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑎 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝑎 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ↔ ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 0 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 0 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 0 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ) ) |
| 40 | 39 | rexbidv | ⊢ ( 𝑎 = 0 → ( ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 𝑎 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑎 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝑎 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ↔ ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 0 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 0 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 0 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ) ) |
| 41 | 40 | imbi2d | ⊢ ( 𝑎 = 0 → ( ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) → ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 𝑎 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑎 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝑎 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ) ↔ ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) → ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 0 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 0 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 0 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ) ) ) |
| 42 | eleq1 | ⊢ ( 𝑎 = 𝑏 → ( 𝑎 ∈ ( 0 ..^ 𝐿 ) ↔ 𝑏 ∈ ( 0 ..^ 𝐿 ) ) ) | |
| 43 | fveq2 | ⊢ ( 𝑎 = 𝑏 → ( 𝑤 ‘ 𝑎 ) = ( 𝑤 ‘ 𝑏 ) ) | |
| 44 | 43 | difeq1d | ⊢ ( 𝑎 = 𝑏 → ( ( 𝑤 ‘ 𝑎 ) ∖ I ) = ( ( 𝑤 ‘ 𝑏 ) ∖ I ) ) |
| 45 | 44 | dmeqd | ⊢ ( 𝑎 = 𝑏 → dom ( ( 𝑤 ‘ 𝑎 ) ∖ I ) = dom ( ( 𝑤 ‘ 𝑏 ) ∖ I ) ) |
| 46 | 45 | eleq2d | ⊢ ( 𝑎 = 𝑏 → ( 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑎 ) ∖ I ) ↔ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑏 ) ∖ I ) ) ) |
| 47 | oveq2 | ⊢ ( 𝑎 = 𝑏 → ( 0 ..^ 𝑎 ) = ( 0 ..^ 𝑏 ) ) | |
| 48 | 47 | raleqdv | ⊢ ( 𝑎 = 𝑏 → ( ∀ 𝑐 ∈ ( 0 ..^ 𝑎 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ↔ ∀ 𝑐 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) |
| 49 | 42 46 48 | 3anbi123d | ⊢ ( 𝑎 = 𝑏 → ( ( 𝑎 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑎 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝑎 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ↔ ( 𝑏 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑏 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ) |
| 50 | 49 | anbi2d | ⊢ ( 𝑎 = 𝑏 → ( ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 𝑎 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑎 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝑎 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ↔ ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 𝑏 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑏 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ) ) |
| 51 | 50 | rexbidv | ⊢ ( 𝑎 = 𝑏 → ( ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 𝑎 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑎 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝑎 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ↔ ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 𝑏 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑏 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ) ) |
| 52 | oveq2 | ⊢ ( 𝑤 = 𝑥 → ( 𝐺 Σg 𝑤 ) = ( 𝐺 Σg 𝑥 ) ) | |
| 53 | 52 | eqeq1d | ⊢ ( 𝑤 = 𝑥 → ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ↔ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) |
| 54 | fveqeq2 | ⊢ ( 𝑤 = 𝑥 → ( ( ♯ ‘ 𝑤 ) = 𝐿 ↔ ( ♯ ‘ 𝑥 ) = 𝐿 ) ) | |
| 55 | 53 54 | anbi12d | ⊢ ( 𝑤 = 𝑥 → ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ↔ ( ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑥 ) = 𝐿 ) ) ) |
| 56 | fveq1 | ⊢ ( 𝑤 = 𝑥 → ( 𝑤 ‘ 𝑏 ) = ( 𝑥 ‘ 𝑏 ) ) | |
| 57 | 56 | difeq1d | ⊢ ( 𝑤 = 𝑥 → ( ( 𝑤 ‘ 𝑏 ) ∖ I ) = ( ( 𝑥 ‘ 𝑏 ) ∖ I ) ) |
| 58 | 57 | dmeqd | ⊢ ( 𝑤 = 𝑥 → dom ( ( 𝑤 ‘ 𝑏 ) ∖ I ) = dom ( ( 𝑥 ‘ 𝑏 ) ∖ I ) ) |
| 59 | 58 | eleq2d | ⊢ ( 𝑤 = 𝑥 → ( 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑏 ) ∖ I ) ↔ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑏 ) ∖ I ) ) ) |
| 60 | fveq1 | ⊢ ( 𝑤 = 𝑥 → ( 𝑤 ‘ 𝑐 ) = ( 𝑥 ‘ 𝑐 ) ) | |
| 61 | 60 | difeq1d | ⊢ ( 𝑤 = 𝑥 → ( ( 𝑤 ‘ 𝑐 ) ∖ I ) = ( ( 𝑥 ‘ 𝑐 ) ∖ I ) ) |
| 62 | 61 | dmeqd | ⊢ ( 𝑤 = 𝑥 → dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) = dom ( ( 𝑥 ‘ 𝑐 ) ∖ I ) ) |
| 63 | 62 | eleq2d | ⊢ ( 𝑤 = 𝑥 → ( 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ↔ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑐 ) ∖ I ) ) ) |
| 64 | 63 | notbid | ⊢ ( 𝑤 = 𝑥 → ( ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ↔ ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑐 ) ∖ I ) ) ) |
| 65 | 64 | ralbidv | ⊢ ( 𝑤 = 𝑥 → ( ∀ 𝑐 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ↔ ∀ 𝑐 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑐 ) ∖ I ) ) ) |
| 66 | fveq2 | ⊢ ( 𝑐 = 𝑑 → ( 𝑥 ‘ 𝑐 ) = ( 𝑥 ‘ 𝑑 ) ) | |
| 67 | 66 | difeq1d | ⊢ ( 𝑐 = 𝑑 → ( ( 𝑥 ‘ 𝑐 ) ∖ I ) = ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) |
| 68 | 67 | dmeqd | ⊢ ( 𝑐 = 𝑑 → dom ( ( 𝑥 ‘ 𝑐 ) ∖ I ) = dom ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) |
| 69 | 68 | eleq2d | ⊢ ( 𝑐 = 𝑑 → ( 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑐 ) ∖ I ) ↔ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) ) |
| 70 | 69 | notbid | ⊢ ( 𝑐 = 𝑑 → ( ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑐 ) ∖ I ) ↔ ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) ) |
| 71 | 70 | cbvralvw | ⊢ ( ∀ 𝑐 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑐 ) ∖ I ) ↔ ∀ 𝑑 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) |
| 72 | 65 71 | bitrdi | ⊢ ( 𝑤 = 𝑥 → ( ∀ 𝑐 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ↔ ∀ 𝑑 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) ) |
| 73 | 59 72 | 3anbi23d | ⊢ ( 𝑤 = 𝑥 → ( ( 𝑏 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑏 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ↔ ( 𝑏 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑏 ) ∖ I ) ∧ ∀ 𝑑 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) ) ) |
| 74 | 55 73 | anbi12d | ⊢ ( 𝑤 = 𝑥 → ( ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 𝑏 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑏 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ↔ ( ( ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑥 ) = 𝐿 ) ∧ ( 𝑏 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑏 ) ∖ I ) ∧ ∀ 𝑑 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) ) ) ) |
| 75 | 74 | cbvrexvw | ⊢ ( ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 𝑏 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑏 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ↔ ∃ 𝑥 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑥 ) = 𝐿 ) ∧ ( 𝑏 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑏 ) ∖ I ) ∧ ∀ 𝑑 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) ) ) |
| 76 | 51 75 | bitrdi | ⊢ ( 𝑎 = 𝑏 → ( ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 𝑎 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑎 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝑎 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ↔ ∃ 𝑥 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑥 ) = 𝐿 ) ∧ ( 𝑏 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑏 ) ∖ I ) ∧ ∀ 𝑑 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) ) ) ) |
| 77 | 76 | imbi2d | ⊢ ( 𝑎 = 𝑏 → ( ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) → ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 𝑎 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑎 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝑎 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ) ↔ ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) → ∃ 𝑥 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑥 ) = 𝐿 ) ∧ ( 𝑏 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑏 ) ∖ I ) ∧ ∀ 𝑑 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) ) ) ) ) |
| 78 | eleq1 | ⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( 𝑎 ∈ ( 0 ..^ 𝐿 ) ↔ ( 𝑏 + 1 ) ∈ ( 0 ..^ 𝐿 ) ) ) | |
| 79 | fveq2 | ⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( 𝑤 ‘ 𝑎 ) = ( 𝑤 ‘ ( 𝑏 + 1 ) ) ) | |
| 80 | 79 | difeq1d | ⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( ( 𝑤 ‘ 𝑎 ) ∖ I ) = ( ( 𝑤 ‘ ( 𝑏 + 1 ) ) ∖ I ) ) |
| 81 | 80 | dmeqd | ⊢ ( 𝑎 = ( 𝑏 + 1 ) → dom ( ( 𝑤 ‘ 𝑎 ) ∖ I ) = dom ( ( 𝑤 ‘ ( 𝑏 + 1 ) ) ∖ I ) ) |
| 82 | 81 | eleq2d | ⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑎 ) ∖ I ) ↔ 𝑒 ∈ dom ( ( 𝑤 ‘ ( 𝑏 + 1 ) ) ∖ I ) ) ) |
| 83 | oveq2 | ⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( 0 ..^ 𝑎 ) = ( 0 ..^ ( 𝑏 + 1 ) ) ) | |
| 84 | 83 | raleqdv | ⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( ∀ 𝑐 ∈ ( 0 ..^ 𝑎 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ↔ ∀ 𝑐 ∈ ( 0 ..^ ( 𝑏 + 1 ) ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) |
| 85 | 78 82 84 | 3anbi123d | ⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( ( 𝑎 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑎 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝑎 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ↔ ( ( 𝑏 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ ( 𝑏 + 1 ) ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ ( 𝑏 + 1 ) ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ) |
| 86 | 85 | anbi2d | ⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 𝑎 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑎 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝑎 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ↔ ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( ( 𝑏 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ ( 𝑏 + 1 ) ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ ( 𝑏 + 1 ) ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ) ) |
| 87 | 86 | rexbidv | ⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 𝑎 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑎 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝑎 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ↔ ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( ( 𝑏 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ ( 𝑏 + 1 ) ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ ( 𝑏 + 1 ) ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ) ) |
| 88 | 87 | imbi2d | ⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) → ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 𝑎 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑎 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝑎 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ) ↔ ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) → ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( ( 𝑏 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ ( 𝑏 + 1 ) ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ ( 𝑏 + 1 ) ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ) ) ) |
| 89 | eleq1 | ⊢ ( 𝑎 = 𝐿 → ( 𝑎 ∈ ( 0 ..^ 𝐿 ) ↔ 𝐿 ∈ ( 0 ..^ 𝐿 ) ) ) | |
| 90 | fveq2 | ⊢ ( 𝑎 = 𝐿 → ( 𝑤 ‘ 𝑎 ) = ( 𝑤 ‘ 𝐿 ) ) | |
| 91 | 90 | difeq1d | ⊢ ( 𝑎 = 𝐿 → ( ( 𝑤 ‘ 𝑎 ) ∖ I ) = ( ( 𝑤 ‘ 𝐿 ) ∖ I ) ) |
| 92 | 91 | dmeqd | ⊢ ( 𝑎 = 𝐿 → dom ( ( 𝑤 ‘ 𝑎 ) ∖ I ) = dom ( ( 𝑤 ‘ 𝐿 ) ∖ I ) ) |
| 93 | 92 | eleq2d | ⊢ ( 𝑎 = 𝐿 → ( 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑎 ) ∖ I ) ↔ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝐿 ) ∖ I ) ) ) |
| 94 | oveq2 | ⊢ ( 𝑎 = 𝐿 → ( 0 ..^ 𝑎 ) = ( 0 ..^ 𝐿 ) ) | |
| 95 | 94 | raleqdv | ⊢ ( 𝑎 = 𝐿 → ( ∀ 𝑐 ∈ ( 0 ..^ 𝑎 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ↔ ∀ 𝑐 ∈ ( 0 ..^ 𝐿 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) |
| 96 | 89 93 95 | 3anbi123d | ⊢ ( 𝑎 = 𝐿 → ( ( 𝑎 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑎 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝑎 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ↔ ( 𝐿 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝐿 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝐿 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ) |
| 97 | 96 | anbi2d | ⊢ ( 𝑎 = 𝐿 → ( ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 𝑎 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑎 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝑎 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ↔ ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 𝐿 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝐿 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝐿 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ) ) |
| 98 | 97 | rexbidv | ⊢ ( 𝑎 = 𝐿 → ( ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 𝑎 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑎 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝑎 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ↔ ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 𝐿 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝐿 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝐿 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ) ) |
| 99 | 98 | imbi2d | ⊢ ( 𝑎 = 𝐿 → ( ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) → ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 𝑎 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑎 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝑎 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ) ↔ ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) → ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 𝐿 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝐿 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝐿 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ) ) ) |
| 100 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) → 𝑊 ∈ Word 𝑇 ) |
| 101 | 7 5 | jca | ⊢ ( 𝜑 → ( ( 𝐺 Σg 𝑊 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑊 ) = 𝐿 ) ) |
| 102 | 101 | adantr | ⊢ ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) → ( ( 𝐺 Σg 𝑊 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑊 ) = 𝐿 ) ) |
| 103 | 17 | adantr | ⊢ ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) → 0 ∈ ( 0 ..^ 𝐿 ) ) |
| 104 | simpr | ⊢ ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) → 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) | |
| 105 | ral0 | ⊢ ∀ 𝑐 ∈ ∅ ¬ 𝑒 ∈ dom ( ( 𝑊 ‘ 𝑐 ) ∖ I ) | |
| 106 | fzo0 | ⊢ ( 0 ..^ 0 ) = ∅ | |
| 107 | 106 | raleqi | ⊢ ( ∀ 𝑐 ∈ ( 0 ..^ 0 ) ¬ 𝑒 ∈ dom ( ( 𝑊 ‘ 𝑐 ) ∖ I ) ↔ ∀ 𝑐 ∈ ∅ ¬ 𝑒 ∈ dom ( ( 𝑊 ‘ 𝑐 ) ∖ I ) ) |
| 108 | 105 107 | mpbir | ⊢ ∀ 𝑐 ∈ ( 0 ..^ 0 ) ¬ 𝑒 ∈ dom ( ( 𝑊 ‘ 𝑐 ) ∖ I ) |
| 109 | 108 | a1i | ⊢ ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) → ∀ 𝑐 ∈ ( 0 ..^ 0 ) ¬ 𝑒 ∈ dom ( ( 𝑊 ‘ 𝑐 ) ∖ I ) ) |
| 110 | 103 104 109 | 3jca | ⊢ ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) → ( 0 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 0 ) ¬ 𝑒 ∈ dom ( ( 𝑊 ‘ 𝑐 ) ∖ I ) ) ) |
| 111 | oveq2 | ⊢ ( 𝑤 = 𝑊 → ( 𝐺 Σg 𝑤 ) = ( 𝐺 Σg 𝑊 ) ) | |
| 112 | 111 | eqeq1d | ⊢ ( 𝑤 = 𝑊 → ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ↔ ( 𝐺 Σg 𝑊 ) = ( I ↾ 𝐷 ) ) ) |
| 113 | fveqeq2 | ⊢ ( 𝑤 = 𝑊 → ( ( ♯ ‘ 𝑤 ) = 𝐿 ↔ ( ♯ ‘ 𝑊 ) = 𝐿 ) ) | |
| 114 | 112 113 | anbi12d | ⊢ ( 𝑤 = 𝑊 → ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ↔ ( ( 𝐺 Σg 𝑊 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑊 ) = 𝐿 ) ) ) |
| 115 | fveq1 | ⊢ ( 𝑤 = 𝑊 → ( 𝑤 ‘ 0 ) = ( 𝑊 ‘ 0 ) ) | |
| 116 | 115 | difeq1d | ⊢ ( 𝑤 = 𝑊 → ( ( 𝑤 ‘ 0 ) ∖ I ) = ( ( 𝑊 ‘ 0 ) ∖ I ) ) |
| 117 | 116 | dmeqd | ⊢ ( 𝑤 = 𝑊 → dom ( ( 𝑤 ‘ 0 ) ∖ I ) = dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) |
| 118 | 117 | eleq2d | ⊢ ( 𝑤 = 𝑊 → ( 𝑒 ∈ dom ( ( 𝑤 ‘ 0 ) ∖ I ) ↔ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) ) |
| 119 | fveq1 | ⊢ ( 𝑤 = 𝑊 → ( 𝑤 ‘ 𝑐 ) = ( 𝑊 ‘ 𝑐 ) ) | |
| 120 | 119 | difeq1d | ⊢ ( 𝑤 = 𝑊 → ( ( 𝑤 ‘ 𝑐 ) ∖ I ) = ( ( 𝑊 ‘ 𝑐 ) ∖ I ) ) |
| 121 | 120 | dmeqd | ⊢ ( 𝑤 = 𝑊 → dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) = dom ( ( 𝑊 ‘ 𝑐 ) ∖ I ) ) |
| 122 | 121 | eleq2d | ⊢ ( 𝑤 = 𝑊 → ( 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ↔ 𝑒 ∈ dom ( ( 𝑊 ‘ 𝑐 ) ∖ I ) ) ) |
| 123 | 122 | notbid | ⊢ ( 𝑤 = 𝑊 → ( ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ↔ ¬ 𝑒 ∈ dom ( ( 𝑊 ‘ 𝑐 ) ∖ I ) ) ) |
| 124 | 123 | ralbidv | ⊢ ( 𝑤 = 𝑊 → ( ∀ 𝑐 ∈ ( 0 ..^ 0 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ↔ ∀ 𝑐 ∈ ( 0 ..^ 0 ) ¬ 𝑒 ∈ dom ( ( 𝑊 ‘ 𝑐 ) ∖ I ) ) ) |
| 125 | 118 124 | 3anbi23d | ⊢ ( 𝑤 = 𝑊 → ( ( 0 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 0 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 0 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ↔ ( 0 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 0 ) ¬ 𝑒 ∈ dom ( ( 𝑊 ‘ 𝑐 ) ∖ I ) ) ) ) |
| 126 | 114 125 | anbi12d | ⊢ ( 𝑤 = 𝑊 → ( ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 0 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 0 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 0 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ↔ ( ( ( 𝐺 Σg 𝑊 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑊 ) = 𝐿 ) ∧ ( 0 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 0 ) ¬ 𝑒 ∈ dom ( ( 𝑊 ‘ 𝑐 ) ∖ I ) ) ) ) ) |
| 127 | 126 | rspcev | ⊢ ( ( 𝑊 ∈ Word 𝑇 ∧ ( ( ( 𝐺 Σg 𝑊 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑊 ) = 𝐿 ) ∧ ( 0 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 0 ) ¬ 𝑒 ∈ dom ( ( 𝑊 ‘ 𝑐 ) ∖ I ) ) ) ) → ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 0 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 0 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 0 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ) |
| 128 | 100 102 110 127 | syl12anc | ⊢ ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) → ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 0 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 0 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 0 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ) |
| 129 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) ∧ ( 𝑥 ∈ Word 𝑇 ∧ ( ( ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑥 ) = 𝐿 ) ∧ ( 𝑏 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑏 ) ∖ I ) ∧ ∀ 𝑑 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) ) ) ) → 𝐷 ∈ 𝑉 ) |
| 130 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) ∧ ( 𝑥 ∈ Word 𝑇 ∧ ( ( ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑥 ) = 𝐿 ) ∧ ( 𝑏 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑏 ) ∖ I ) ∧ ∀ 𝑑 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) ) ) ) → 𝑥 ∈ Word 𝑇 ) | |
| 131 | simpll | ⊢ ( ( ( ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑥 ) = 𝐿 ) ∧ ( 𝑏 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑏 ) ∖ I ) ∧ ∀ 𝑑 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) ) → ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) | |
| 132 | 131 | ad2antll | ⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) ∧ ( 𝑥 ∈ Word 𝑇 ∧ ( ( ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑥 ) = 𝐿 ) ∧ ( 𝑏 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑏 ) ∖ I ) ∧ ∀ 𝑑 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) ) ) ) → ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) |
| 133 | simplr | ⊢ ( ( ( ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑥 ) = 𝐿 ) ∧ ( 𝑏 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑏 ) ∖ I ) ∧ ∀ 𝑑 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) ) → ( ♯ ‘ 𝑥 ) = 𝐿 ) | |
| 134 | 133 | ad2antll | ⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) ∧ ( 𝑥 ∈ Word 𝑇 ∧ ( ( ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑥 ) = 𝐿 ) ∧ ( 𝑏 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑏 ) ∖ I ) ∧ ∀ 𝑑 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) ) ) ) → ( ♯ ‘ 𝑥 ) = 𝐿 ) |
| 135 | simpr1 | ⊢ ( ( ( ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑥 ) = 𝐿 ) ∧ ( 𝑏 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑏 ) ∖ I ) ∧ ∀ 𝑑 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) ) → 𝑏 ∈ ( 0 ..^ 𝐿 ) ) | |
| 136 | 135 | ad2antll | ⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) ∧ ( 𝑥 ∈ Word 𝑇 ∧ ( ( ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑥 ) = 𝐿 ) ∧ ( 𝑏 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑏 ) ∖ I ) ∧ ∀ 𝑑 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) ) ) ) → 𝑏 ∈ ( 0 ..^ 𝐿 ) ) |
| 137 | simpr2 | ⊢ ( ( ( ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑥 ) = 𝐿 ) ∧ ( 𝑏 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑏 ) ∖ I ) ∧ ∀ 𝑑 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) ) → 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑏 ) ∖ I ) ) | |
| 138 | 137 | ad2antll | ⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) ∧ ( 𝑥 ∈ Word 𝑇 ∧ ( ( ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑥 ) = 𝐿 ) ∧ ( 𝑏 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑏 ) ∖ I ) ∧ ∀ 𝑑 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) ) ) ) → 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑏 ) ∖ I ) ) |
| 139 | simpr3 | ⊢ ( ( ( ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑥 ) = 𝐿 ) ∧ ( 𝑏 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑏 ) ∖ I ) ∧ ∀ 𝑑 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) ) → ∀ 𝑑 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) | |
| 140 | 139 | ad2antll | ⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) ∧ ( 𝑥 ∈ Word 𝑇 ∧ ( ( ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑥 ) = 𝐿 ) ∧ ( 𝑏 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑏 ) ∖ I ) ∧ ∀ 𝑑 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) ) ) ) → ∀ 𝑑 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) |
| 141 | fveqeq2 | ⊢ ( 𝑥 = 𝑦 → ( ( ♯ ‘ 𝑥 ) = ( 𝐿 − 2 ) ↔ ( ♯ ‘ 𝑦 ) = ( 𝐿 − 2 ) ) ) | |
| 142 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐺 Σg 𝑥 ) = ( 𝐺 Σg 𝑦 ) ) | |
| 143 | 142 | eqeq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ↔ ( 𝐺 Σg 𝑦 ) = ( I ↾ 𝐷 ) ) ) |
| 144 | 141 143 | anbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( ( ♯ ‘ 𝑥 ) = ( 𝐿 − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ↔ ( ( ♯ ‘ 𝑦 ) = ( 𝐿 − 2 ) ∧ ( 𝐺 Σg 𝑦 ) = ( I ↾ 𝐷 ) ) ) ) |
| 145 | 144 | cbvrexvw | ⊢ ( ∃ 𝑥 ∈ Word 𝑇 ( ( ♯ ‘ 𝑥 ) = ( 𝐿 − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ↔ ∃ 𝑦 ∈ Word 𝑇 ( ( ♯ ‘ 𝑦 ) = ( 𝐿 − 2 ) ∧ ( 𝐺 Σg 𝑦 ) = ( I ↾ 𝐷 ) ) ) |
| 146 | 8 145 | sylnib | ⊢ ( 𝜑 → ¬ ∃ 𝑦 ∈ Word 𝑇 ( ( ♯ ‘ 𝑦 ) = ( 𝐿 − 2 ) ∧ ( 𝐺 Σg 𝑦 ) = ( I ↾ 𝐷 ) ) ) |
| 147 | 146 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) ∧ ( 𝑥 ∈ Word 𝑇 ∧ ( ( ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑥 ) = 𝐿 ) ∧ ( 𝑏 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑏 ) ∖ I ) ∧ ∀ 𝑑 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) ) ) ) → ¬ ∃ 𝑦 ∈ Word 𝑇 ( ( ♯ ‘ 𝑦 ) = ( 𝐿 − 2 ) ∧ ( 𝐺 Σg 𝑦 ) = ( I ↾ 𝐷 ) ) ) |
| 148 | 1 2 129 130 132 134 136 138 140 147 | psgnunilem2 | ⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) ∧ ( 𝑥 ∈ Word 𝑇 ∧ ( ( ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑥 ) = 𝐿 ) ∧ ( 𝑏 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑏 ) ∖ I ) ∧ ∀ 𝑑 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) ) ) ) → ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( ( 𝑏 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ ( 𝑏 + 1 ) ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ ( 𝑏 + 1 ) ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ) |
| 149 | 148 | rexlimdvaa | ⊢ ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) → ( ∃ 𝑥 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑥 ) = 𝐿 ) ∧ ( 𝑏 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑏 ) ∖ I ) ∧ ∀ 𝑑 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) ) → ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( ( 𝑏 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ ( 𝑏 + 1 ) ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ ( 𝑏 + 1 ) ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ) ) |
| 150 | 149 | a2i | ⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) → ∃ 𝑥 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑥 ) = 𝐿 ) ∧ ( 𝑏 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑏 ) ∖ I ) ∧ ∀ 𝑑 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) ) ) → ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) → ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( ( 𝑏 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ ( 𝑏 + 1 ) ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ ( 𝑏 + 1 ) ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ) ) |
| 151 | 150 | a1i | ⊢ ( 𝑏 ∈ ℕ0 → ( ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) → ∃ 𝑥 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑥 ) = 𝐿 ) ∧ ( 𝑏 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑏 ) ∖ I ) ∧ ∀ 𝑑 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) ) ) → ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) → ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( ( 𝑏 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ ( 𝑏 + 1 ) ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ ( 𝑏 + 1 ) ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ) ) ) |
| 152 | 41 77 88 99 128 151 | nn0ind | ⊢ ( 𝐿 ∈ ℕ0 → ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) → ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 𝐿 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝐿 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝐿 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ) ) |
| 153 | 30 152 | mtoi | ⊢ ( 𝐿 ∈ ℕ0 → ¬ ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) ) |
| 154 | 153 | con2i | ⊢ ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) → ¬ 𝐿 ∈ ℕ0 ) |
| 155 | 25 154 | exlimddv | ⊢ ( 𝜑 → ¬ 𝐿 ∈ ℕ0 ) |
| 156 | 10 155 | pm2.65i | ⊢ ¬ 𝜑 |