This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the same permutation can be written in more than one way as a product of transpositions, the parity of those products must agree; otherwise the product of one with the inverse of the other would be an odd representation of the identity. (Contributed by Stefan O'Rear, 27-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgnuni.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) | |
| psgnuni.t | ⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) | ||
| psgnuni.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) | ||
| psgnuni.w | ⊢ ( 𝜑 → 𝑊 ∈ Word 𝑇 ) | ||
| psgnuni.x | ⊢ ( 𝜑 → 𝑋 ∈ Word 𝑇 ) | ||
| psgnuni.e | ⊢ ( 𝜑 → ( 𝐺 Σg 𝑊 ) = ( 𝐺 Σg 𝑋 ) ) | ||
| Assertion | psgnuni | ⊢ ( 𝜑 → ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgnuni.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) | |
| 2 | psgnuni.t | ⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) | |
| 3 | psgnuni.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) | |
| 4 | psgnuni.w | ⊢ ( 𝜑 → 𝑊 ∈ Word 𝑇 ) | |
| 5 | psgnuni.x | ⊢ ( 𝜑 → 𝑋 ∈ Word 𝑇 ) | |
| 6 | psgnuni.e | ⊢ ( 𝜑 → ( 𝐺 Σg 𝑊 ) = ( 𝐺 Σg 𝑋 ) ) | |
| 7 | lencl | ⊢ ( 𝑊 ∈ Word 𝑇 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) | |
| 8 | 4 7 | syl | ⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
| 9 | 8 | nn0zd | ⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) ∈ ℤ ) |
| 10 | m1expcl | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℤ → ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) ∈ ℤ ) | |
| 11 | 9 10 | syl | ⊢ ( 𝜑 → ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) ∈ ℤ ) |
| 12 | 11 | zcnd | ⊢ ( 𝜑 → ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) ∈ ℂ ) |
| 13 | lencl | ⊢ ( 𝑋 ∈ Word 𝑇 → ( ♯ ‘ 𝑋 ) ∈ ℕ0 ) | |
| 14 | 5 13 | syl | ⊢ ( 𝜑 → ( ♯ ‘ 𝑋 ) ∈ ℕ0 ) |
| 15 | 14 | nn0zd | ⊢ ( 𝜑 → ( ♯ ‘ 𝑋 ) ∈ ℤ ) |
| 16 | m1expcl | ⊢ ( ( ♯ ‘ 𝑋 ) ∈ ℤ → ( - 1 ↑ ( ♯ ‘ 𝑋 ) ) ∈ ℤ ) | |
| 17 | 15 16 | syl | ⊢ ( 𝜑 → ( - 1 ↑ ( ♯ ‘ 𝑋 ) ) ∈ ℤ ) |
| 18 | 17 | zcnd | ⊢ ( 𝜑 → ( - 1 ↑ ( ♯ ‘ 𝑋 ) ) ∈ ℂ ) |
| 19 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 20 | neg1ne0 | ⊢ - 1 ≠ 0 | |
| 21 | expne0i | ⊢ ( ( - 1 ∈ ℂ ∧ - 1 ≠ 0 ∧ ( ♯ ‘ 𝑋 ) ∈ ℤ ) → ( - 1 ↑ ( ♯ ‘ 𝑋 ) ) ≠ 0 ) | |
| 22 | 19 20 15 21 | mp3an12i | ⊢ ( 𝜑 → ( - 1 ↑ ( ♯ ‘ 𝑋 ) ) ≠ 0 ) |
| 23 | m1expaddsub | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℤ ∧ ( ♯ ‘ 𝑋 ) ∈ ℤ ) → ( - 1 ↑ ( ( ♯ ‘ 𝑊 ) − ( ♯ ‘ 𝑋 ) ) ) = ( - 1 ↑ ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 𝑋 ) ) ) ) | |
| 24 | 9 15 23 | syl2anc | ⊢ ( 𝜑 → ( - 1 ↑ ( ( ♯ ‘ 𝑊 ) − ( ♯ ‘ 𝑋 ) ) ) = ( - 1 ↑ ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 𝑋 ) ) ) ) |
| 25 | expsub | ⊢ ( ( ( - 1 ∈ ℂ ∧ - 1 ≠ 0 ) ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℤ ∧ ( ♯ ‘ 𝑋 ) ∈ ℤ ) ) → ( - 1 ↑ ( ( ♯ ‘ 𝑊 ) − ( ♯ ‘ 𝑋 ) ) ) = ( ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) / ( - 1 ↑ ( ♯ ‘ 𝑋 ) ) ) ) | |
| 26 | 19 20 25 | mpanl12 | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℤ ∧ ( ♯ ‘ 𝑋 ) ∈ ℤ ) → ( - 1 ↑ ( ( ♯ ‘ 𝑊 ) − ( ♯ ‘ 𝑋 ) ) ) = ( ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) / ( - 1 ↑ ( ♯ ‘ 𝑋 ) ) ) ) |
| 27 | 9 15 26 | syl2anc | ⊢ ( 𝜑 → ( - 1 ↑ ( ( ♯ ‘ 𝑊 ) − ( ♯ ‘ 𝑋 ) ) ) = ( ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) / ( - 1 ↑ ( ♯ ‘ 𝑋 ) ) ) ) |
| 28 | revcl | ⊢ ( 𝑋 ∈ Word 𝑇 → ( reverse ‘ 𝑋 ) ∈ Word 𝑇 ) | |
| 29 | 5 28 | syl | ⊢ ( 𝜑 → ( reverse ‘ 𝑋 ) ∈ Word 𝑇 ) |
| 30 | ccatlen | ⊢ ( ( 𝑊 ∈ Word 𝑇 ∧ ( reverse ‘ 𝑋 ) ∈ Word 𝑇 ) → ( ♯ ‘ ( 𝑊 ++ ( reverse ‘ 𝑋 ) ) ) = ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ ( reverse ‘ 𝑋 ) ) ) ) | |
| 31 | 4 29 30 | syl2anc | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝑊 ++ ( reverse ‘ 𝑋 ) ) ) = ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ ( reverse ‘ 𝑋 ) ) ) ) |
| 32 | revlen | ⊢ ( 𝑋 ∈ Word 𝑇 → ( ♯ ‘ ( reverse ‘ 𝑋 ) ) = ( ♯ ‘ 𝑋 ) ) | |
| 33 | 5 32 | syl | ⊢ ( 𝜑 → ( ♯ ‘ ( reverse ‘ 𝑋 ) ) = ( ♯ ‘ 𝑋 ) ) |
| 34 | 33 | oveq2d | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ ( reverse ‘ 𝑋 ) ) ) = ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 𝑋 ) ) ) |
| 35 | 31 34 | eqtr2d | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 𝑋 ) ) = ( ♯ ‘ ( 𝑊 ++ ( reverse ‘ 𝑋 ) ) ) ) |
| 36 | 35 | oveq2d | ⊢ ( 𝜑 → ( - 1 ↑ ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 𝑋 ) ) ) = ( - 1 ↑ ( ♯ ‘ ( 𝑊 ++ ( reverse ‘ 𝑋 ) ) ) ) ) |
| 37 | ccatcl | ⊢ ( ( 𝑊 ∈ Word 𝑇 ∧ ( reverse ‘ 𝑋 ) ∈ Word 𝑇 ) → ( 𝑊 ++ ( reverse ‘ 𝑋 ) ) ∈ Word 𝑇 ) | |
| 38 | 4 29 37 | syl2anc | ⊢ ( 𝜑 → ( 𝑊 ++ ( reverse ‘ 𝑋 ) ) ∈ Word 𝑇 ) |
| 39 | 6 | fveq2d | ⊢ ( 𝜑 → ( ( invg ‘ 𝐺 ) ‘ ( 𝐺 Σg 𝑊 ) ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝐺 Σg 𝑋 ) ) ) |
| 40 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 41 | 2 1 40 | symgtrinv | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑋 ∈ Word 𝑇 ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝐺 Σg 𝑋 ) ) = ( 𝐺 Σg ( reverse ‘ 𝑋 ) ) ) |
| 42 | 3 5 41 | syl2anc | ⊢ ( 𝜑 → ( ( invg ‘ 𝐺 ) ‘ ( 𝐺 Σg 𝑋 ) ) = ( 𝐺 Σg ( reverse ‘ 𝑋 ) ) ) |
| 43 | 39 42 | eqtr2d | ⊢ ( 𝜑 → ( 𝐺 Σg ( reverse ‘ 𝑋 ) ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝐺 Σg 𝑊 ) ) ) |
| 44 | 43 | oveq2d | ⊢ ( 𝜑 → ( ( 𝐺 Σg 𝑊 ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( reverse ‘ 𝑋 ) ) ) = ( ( 𝐺 Σg 𝑊 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐺 Σg 𝑊 ) ) ) ) |
| 45 | 1 | symggrp | ⊢ ( 𝐷 ∈ 𝑉 → 𝐺 ∈ Grp ) |
| 46 | 3 45 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 47 | grpmnd | ⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd ) | |
| 48 | 3 45 47 | 3syl | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 49 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 50 | 2 1 49 | symgtrf | ⊢ 𝑇 ⊆ ( Base ‘ 𝐺 ) |
| 51 | sswrd | ⊢ ( 𝑇 ⊆ ( Base ‘ 𝐺 ) → Word 𝑇 ⊆ Word ( Base ‘ 𝐺 ) ) | |
| 52 | 50 51 | ax-mp | ⊢ Word 𝑇 ⊆ Word ( Base ‘ 𝐺 ) |
| 53 | 52 4 | sselid | ⊢ ( 𝜑 → 𝑊 ∈ Word ( Base ‘ 𝐺 ) ) |
| 54 | 49 | gsumwcl | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑊 ∈ Word ( Base ‘ 𝐺 ) ) → ( 𝐺 Σg 𝑊 ) ∈ ( Base ‘ 𝐺 ) ) |
| 55 | 48 53 54 | syl2anc | ⊢ ( 𝜑 → ( 𝐺 Σg 𝑊 ) ∈ ( Base ‘ 𝐺 ) ) |
| 56 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 57 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 58 | 49 56 57 40 | grprinv | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐺 Σg 𝑊 ) ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝐺 Σg 𝑊 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐺 Σg 𝑊 ) ) ) = ( 0g ‘ 𝐺 ) ) |
| 59 | 46 55 58 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐺 Σg 𝑊 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐺 Σg 𝑊 ) ) ) = ( 0g ‘ 𝐺 ) ) |
| 60 | 44 59 | eqtrd | ⊢ ( 𝜑 → ( ( 𝐺 Σg 𝑊 ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( reverse ‘ 𝑋 ) ) ) = ( 0g ‘ 𝐺 ) ) |
| 61 | 52 29 | sselid | ⊢ ( 𝜑 → ( reverse ‘ 𝑋 ) ∈ Word ( Base ‘ 𝐺 ) ) |
| 62 | 49 56 | gsumccat | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑊 ∈ Word ( Base ‘ 𝐺 ) ∧ ( reverse ‘ 𝑋 ) ∈ Word ( Base ‘ 𝐺 ) ) → ( 𝐺 Σg ( 𝑊 ++ ( reverse ‘ 𝑋 ) ) ) = ( ( 𝐺 Σg 𝑊 ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( reverse ‘ 𝑋 ) ) ) ) |
| 63 | 48 53 61 62 | syl3anc | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑊 ++ ( reverse ‘ 𝑋 ) ) ) = ( ( 𝐺 Σg 𝑊 ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( reverse ‘ 𝑋 ) ) ) ) |
| 64 | 1 | symgid | ⊢ ( 𝐷 ∈ 𝑉 → ( I ↾ 𝐷 ) = ( 0g ‘ 𝐺 ) ) |
| 65 | 3 64 | syl | ⊢ ( 𝜑 → ( I ↾ 𝐷 ) = ( 0g ‘ 𝐺 ) ) |
| 66 | 60 63 65 | 3eqtr4d | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑊 ++ ( reverse ‘ 𝑋 ) ) ) = ( I ↾ 𝐷 ) ) |
| 67 | 1 2 3 38 66 | psgnunilem4 | ⊢ ( 𝜑 → ( - 1 ↑ ( ♯ ‘ ( 𝑊 ++ ( reverse ‘ 𝑋 ) ) ) ) = 1 ) |
| 68 | 36 67 | eqtrd | ⊢ ( 𝜑 → ( - 1 ↑ ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 𝑋 ) ) ) = 1 ) |
| 69 | 24 27 68 | 3eqtr3d | ⊢ ( 𝜑 → ( ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) / ( - 1 ↑ ( ♯ ‘ 𝑋 ) ) ) = 1 ) |
| 70 | 12 18 22 69 | diveq1d | ⊢ ( 𝜑 → ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑋 ) ) ) |