This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for psgnuni . Induction step for moving a transposition as far to the right as possible. (Contributed by Stefan O'Rear, 24-Aug-2015) (Revised by Mario Carneiro, 28-Feb-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgnunilem2.g | |- G = ( SymGrp ` D ) |
|
| psgnunilem2.t | |- T = ran ( pmTrsp ` D ) |
||
| psgnunilem2.d | |- ( ph -> D e. V ) |
||
| psgnunilem2.w | |- ( ph -> W e. Word T ) |
||
| psgnunilem2.id | |- ( ph -> ( G gsum W ) = ( _I |` D ) ) |
||
| psgnunilem2.l | |- ( ph -> ( # ` W ) = L ) |
||
| psgnunilem2.ix | |- ( ph -> I e. ( 0 ..^ L ) ) |
||
| psgnunilem2.a | |- ( ph -> A e. dom ( ( W ` I ) \ _I ) ) |
||
| psgnunilem2.al | |- ( ph -> A. k e. ( 0 ..^ I ) -. A e. dom ( ( W ` k ) \ _I ) ) |
||
| psgnunilem2.in | |- ( ph -> -. E. x e. Word T ( ( # ` x ) = ( L - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) |
||
| Assertion | psgnunilem2 | |- ( ph -> E. w e. Word T ( ( ( G gsum w ) = ( _I |` D ) /\ ( # ` w ) = L ) /\ ( ( I + 1 ) e. ( 0 ..^ L ) /\ A e. dom ( ( w ` ( I + 1 ) ) \ _I ) /\ A. j e. ( 0 ..^ ( I + 1 ) ) -. A e. dom ( ( w ` j ) \ _I ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgnunilem2.g | |- G = ( SymGrp ` D ) |
|
| 2 | psgnunilem2.t | |- T = ran ( pmTrsp ` D ) |
|
| 3 | psgnunilem2.d | |- ( ph -> D e. V ) |
|
| 4 | psgnunilem2.w | |- ( ph -> W e. Word T ) |
|
| 5 | psgnunilem2.id | |- ( ph -> ( G gsum W ) = ( _I |` D ) ) |
|
| 6 | psgnunilem2.l | |- ( ph -> ( # ` W ) = L ) |
|
| 7 | psgnunilem2.ix | |- ( ph -> I e. ( 0 ..^ L ) ) |
|
| 8 | psgnunilem2.a | |- ( ph -> A e. dom ( ( W ` I ) \ _I ) ) |
|
| 9 | psgnunilem2.al | |- ( ph -> A. k e. ( 0 ..^ I ) -. A e. dom ( ( W ` k ) \ _I ) ) |
|
| 10 | psgnunilem2.in | |- ( ph -> -. E. x e. Word T ( ( # ` x ) = ( L - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) |
|
| 11 | wrd0 | |- (/) e. Word T |
|
| 12 | splcl | |- ( ( W e. Word T /\ (/) e. Word T ) -> ( W splice <. I , ( I + 2 ) , (/) >. ) e. Word T ) |
|
| 13 | 4 11 12 | sylancl | |- ( ph -> ( W splice <. I , ( I + 2 ) , (/) >. ) e. Word T ) |
| 14 | 13 | adantr | |- ( ( ph /\ ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) -> ( W splice <. I , ( I + 2 ) , (/) >. ) e. Word T ) |
| 15 | fzossfz | |- ( 0 ..^ L ) C_ ( 0 ... L ) |
|
| 16 | 15 7 | sselid | |- ( ph -> I e. ( 0 ... L ) ) |
| 17 | elfznn0 | |- ( I e. ( 0 ... L ) -> I e. NN0 ) |
|
| 18 | 16 17 | syl | |- ( ph -> I e. NN0 ) |
| 19 | 2nn0 | |- 2 e. NN0 |
|
| 20 | nn0addcl | |- ( ( I e. NN0 /\ 2 e. NN0 ) -> ( I + 2 ) e. NN0 ) |
|
| 21 | 18 19 20 | sylancl | |- ( ph -> ( I + 2 ) e. NN0 ) |
| 22 | 18 | nn0red | |- ( ph -> I e. RR ) |
| 23 | nn0addge1 | |- ( ( I e. RR /\ 2 e. NN0 ) -> I <_ ( I + 2 ) ) |
|
| 24 | 22 19 23 | sylancl | |- ( ph -> I <_ ( I + 2 ) ) |
| 25 | elfz2nn0 | |- ( I e. ( 0 ... ( I + 2 ) ) <-> ( I e. NN0 /\ ( I + 2 ) e. NN0 /\ I <_ ( I + 2 ) ) ) |
|
| 26 | 18 21 24 25 | syl3anbrc | |- ( ph -> I e. ( 0 ... ( I + 2 ) ) ) |
| 27 | 1 2 3 4 5 6 7 8 9 | psgnunilem5 | |- ( ph -> ( I + 1 ) e. ( 0 ..^ L ) ) |
| 28 | fzofzp1 | |- ( ( I + 1 ) e. ( 0 ..^ L ) -> ( ( I + 1 ) + 1 ) e. ( 0 ... L ) ) |
|
| 29 | 27 28 | syl | |- ( ph -> ( ( I + 1 ) + 1 ) e. ( 0 ... L ) ) |
| 30 | df-2 | |- 2 = ( 1 + 1 ) |
|
| 31 | 30 | oveq2i | |- ( I + 2 ) = ( I + ( 1 + 1 ) ) |
| 32 | 18 | nn0cnd | |- ( ph -> I e. CC ) |
| 33 | 1cnd | |- ( ph -> 1 e. CC ) |
|
| 34 | 32 33 33 | addassd | |- ( ph -> ( ( I + 1 ) + 1 ) = ( I + ( 1 + 1 ) ) ) |
| 35 | 31 34 | eqtr4id | |- ( ph -> ( I + 2 ) = ( ( I + 1 ) + 1 ) ) |
| 36 | 6 | oveq2d | |- ( ph -> ( 0 ... ( # ` W ) ) = ( 0 ... L ) ) |
| 37 | 29 35 36 | 3eltr4d | |- ( ph -> ( I + 2 ) e. ( 0 ... ( # ` W ) ) ) |
| 38 | 11 | a1i | |- ( ph -> (/) e. Word T ) |
| 39 | 4 26 37 38 | spllen | |- ( ph -> ( # ` ( W splice <. I , ( I + 2 ) , (/) >. ) ) = ( ( # ` W ) + ( ( # ` (/) ) - ( ( I + 2 ) - I ) ) ) ) |
| 40 | hash0 | |- ( # ` (/) ) = 0 |
|
| 41 | 40 | oveq1i | |- ( ( # ` (/) ) - ( ( I + 2 ) - I ) ) = ( 0 - ( ( I + 2 ) - I ) ) |
| 42 | df-neg | |- -u ( ( I + 2 ) - I ) = ( 0 - ( ( I + 2 ) - I ) ) |
|
| 43 | 41 42 | eqtr4i | |- ( ( # ` (/) ) - ( ( I + 2 ) - I ) ) = -u ( ( I + 2 ) - I ) |
| 44 | 2cn | |- 2 e. CC |
|
| 45 | pncan2 | |- ( ( I e. CC /\ 2 e. CC ) -> ( ( I + 2 ) - I ) = 2 ) |
|
| 46 | 32 44 45 | sylancl | |- ( ph -> ( ( I + 2 ) - I ) = 2 ) |
| 47 | 46 | negeqd | |- ( ph -> -u ( ( I + 2 ) - I ) = -u 2 ) |
| 48 | 43 47 | eqtrid | |- ( ph -> ( ( # ` (/) ) - ( ( I + 2 ) - I ) ) = -u 2 ) |
| 49 | 6 48 | oveq12d | |- ( ph -> ( ( # ` W ) + ( ( # ` (/) ) - ( ( I + 2 ) - I ) ) ) = ( L + -u 2 ) ) |
| 50 | elfzel2 | |- ( I e. ( 0 ... L ) -> L e. ZZ ) |
|
| 51 | 16 50 | syl | |- ( ph -> L e. ZZ ) |
| 52 | 51 | zcnd | |- ( ph -> L e. CC ) |
| 53 | negsub | |- ( ( L e. CC /\ 2 e. CC ) -> ( L + -u 2 ) = ( L - 2 ) ) |
|
| 54 | 52 44 53 | sylancl | |- ( ph -> ( L + -u 2 ) = ( L - 2 ) ) |
| 55 | 39 49 54 | 3eqtrd | |- ( ph -> ( # ` ( W splice <. I , ( I + 2 ) , (/) >. ) ) = ( L - 2 ) ) |
| 56 | 55 | adantr | |- ( ( ph /\ ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) -> ( # ` ( W splice <. I , ( I + 2 ) , (/) >. ) ) = ( L - 2 ) ) |
| 57 | splid | |- ( ( W e. Word T /\ ( I e. ( 0 ... ( I + 2 ) ) /\ ( I + 2 ) e. ( 0 ... ( # ` W ) ) ) ) -> ( W splice <. I , ( I + 2 ) , ( W substr <. I , ( I + 2 ) >. ) >. ) = W ) |
|
| 58 | 4 26 37 57 | syl12anc | |- ( ph -> ( W splice <. I , ( I + 2 ) , ( W substr <. I , ( I + 2 ) >. ) >. ) = W ) |
| 59 | 58 | oveq2d | |- ( ph -> ( G gsum ( W splice <. I , ( I + 2 ) , ( W substr <. I , ( I + 2 ) >. ) >. ) ) = ( G gsum W ) ) |
| 60 | 59 | adantr | |- ( ( ph /\ ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) -> ( G gsum ( W splice <. I , ( I + 2 ) , ( W substr <. I , ( I + 2 ) >. ) >. ) ) = ( G gsum W ) ) |
| 61 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 62 | 1 | symggrp | |- ( D e. V -> G e. Grp ) |
| 63 | 3 62 | syl | |- ( ph -> G e. Grp ) |
| 64 | 63 | grpmndd | |- ( ph -> G e. Mnd ) |
| 65 | 64 | adantr | |- ( ( ph /\ ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) -> G e. Mnd ) |
| 66 | 2 1 61 | symgtrf | |- T C_ ( Base ` G ) |
| 67 | sswrd | |- ( T C_ ( Base ` G ) -> Word T C_ Word ( Base ` G ) ) |
|
| 68 | 66 67 | ax-mp | |- Word T C_ Word ( Base ` G ) |
| 69 | 68 4 | sselid | |- ( ph -> W e. Word ( Base ` G ) ) |
| 70 | 69 | adantr | |- ( ( ph /\ ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) -> W e. Word ( Base ` G ) ) |
| 71 | 26 | adantr | |- ( ( ph /\ ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) -> I e. ( 0 ... ( I + 2 ) ) ) |
| 72 | 37 | adantr | |- ( ( ph /\ ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) -> ( I + 2 ) e. ( 0 ... ( # ` W ) ) ) |
| 73 | swrdcl | |- ( W e. Word ( Base ` G ) -> ( W substr <. I , ( I + 2 ) >. ) e. Word ( Base ` G ) ) |
|
| 74 | 69 73 | syl | |- ( ph -> ( W substr <. I , ( I + 2 ) >. ) e. Word ( Base ` G ) ) |
| 75 | 74 | adantr | |- ( ( ph /\ ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) -> ( W substr <. I , ( I + 2 ) >. ) e. Word ( Base ` G ) ) |
| 76 | wrd0 | |- (/) e. Word ( Base ` G ) |
|
| 77 | 76 | a1i | |- ( ( ph /\ ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) -> (/) e. Word ( Base ` G ) ) |
| 78 | 6 | oveq2d | |- ( ph -> ( 0 ..^ ( # ` W ) ) = ( 0 ..^ L ) ) |
| 79 | 27 78 | eleqtrrd | |- ( ph -> ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) |
| 80 | swrds2 | |- ( ( W e. Word T /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( W substr <. I , ( I + 2 ) >. ) = <" ( W ` I ) ( W ` ( I + 1 ) ) "> ) |
|
| 81 | 4 18 79 80 | syl3anc | |- ( ph -> ( W substr <. I , ( I + 2 ) >. ) = <" ( W ` I ) ( W ` ( I + 1 ) ) "> ) |
| 82 | 81 | oveq2d | |- ( ph -> ( G gsum ( W substr <. I , ( I + 2 ) >. ) ) = ( G gsum <" ( W ` I ) ( W ` ( I + 1 ) ) "> ) ) |
| 83 | wrdf | |- ( W e. Word T -> W : ( 0 ..^ ( # ` W ) ) --> T ) |
|
| 84 | 4 83 | syl | |- ( ph -> W : ( 0 ..^ ( # ` W ) ) --> T ) |
| 85 | 78 | feq2d | |- ( ph -> ( W : ( 0 ..^ ( # ` W ) ) --> T <-> W : ( 0 ..^ L ) --> T ) ) |
| 86 | 84 85 | mpbid | |- ( ph -> W : ( 0 ..^ L ) --> T ) |
| 87 | 86 7 | ffvelcdmd | |- ( ph -> ( W ` I ) e. T ) |
| 88 | 66 87 | sselid | |- ( ph -> ( W ` I ) e. ( Base ` G ) ) |
| 89 | 86 27 | ffvelcdmd | |- ( ph -> ( W ` ( I + 1 ) ) e. T ) |
| 90 | 66 89 | sselid | |- ( ph -> ( W ` ( I + 1 ) ) e. ( Base ` G ) ) |
| 91 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 92 | 61 91 | gsumws2 | |- ( ( G e. Mnd /\ ( W ` I ) e. ( Base ` G ) /\ ( W ` ( I + 1 ) ) e. ( Base ` G ) ) -> ( G gsum <" ( W ` I ) ( W ` ( I + 1 ) ) "> ) = ( ( W ` I ) ( +g ` G ) ( W ` ( I + 1 ) ) ) ) |
| 93 | 64 88 90 92 | syl3anc | |- ( ph -> ( G gsum <" ( W ` I ) ( W ` ( I + 1 ) ) "> ) = ( ( W ` I ) ( +g ` G ) ( W ` ( I + 1 ) ) ) ) |
| 94 | 1 61 91 | symgov | |- ( ( ( W ` I ) e. ( Base ` G ) /\ ( W ` ( I + 1 ) ) e. ( Base ` G ) ) -> ( ( W ` I ) ( +g ` G ) ( W ` ( I + 1 ) ) ) = ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) ) |
| 95 | 88 90 94 | syl2anc | |- ( ph -> ( ( W ` I ) ( +g ` G ) ( W ` ( I + 1 ) ) ) = ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) ) |
| 96 | 82 93 95 | 3eqtrd | |- ( ph -> ( G gsum ( W substr <. I , ( I + 2 ) >. ) ) = ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) ) |
| 97 | 96 | adantr | |- ( ( ph /\ ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) -> ( G gsum ( W substr <. I , ( I + 2 ) >. ) ) = ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) ) |
| 98 | simpr | |- ( ( ph /\ ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) -> ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) |
|
| 99 | 1 | symgid | |- ( D e. V -> ( _I |` D ) = ( 0g ` G ) ) |
| 100 | 3 99 | syl | |- ( ph -> ( _I |` D ) = ( 0g ` G ) ) |
| 101 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 102 | 101 | gsum0 | |- ( G gsum (/) ) = ( 0g ` G ) |
| 103 | 100 102 | eqtr4di | |- ( ph -> ( _I |` D ) = ( G gsum (/) ) ) |
| 104 | 103 | adantr | |- ( ( ph /\ ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) -> ( _I |` D ) = ( G gsum (/) ) ) |
| 105 | 97 98 104 | 3eqtrd | |- ( ( ph /\ ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) -> ( G gsum ( W substr <. I , ( I + 2 ) >. ) ) = ( G gsum (/) ) ) |
| 106 | 61 65 70 71 72 75 77 105 | gsumspl | |- ( ( ph /\ ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) -> ( G gsum ( W splice <. I , ( I + 2 ) , ( W substr <. I , ( I + 2 ) >. ) >. ) ) = ( G gsum ( W splice <. I , ( I + 2 ) , (/) >. ) ) ) |
| 107 | 5 | adantr | |- ( ( ph /\ ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) -> ( G gsum W ) = ( _I |` D ) ) |
| 108 | 60 106 107 | 3eqtr3d | |- ( ( ph /\ ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) -> ( G gsum ( W splice <. I , ( I + 2 ) , (/) >. ) ) = ( _I |` D ) ) |
| 109 | fveqeq2 | |- ( x = ( W splice <. I , ( I + 2 ) , (/) >. ) -> ( ( # ` x ) = ( L - 2 ) <-> ( # ` ( W splice <. I , ( I + 2 ) , (/) >. ) ) = ( L - 2 ) ) ) |
|
| 110 | oveq2 | |- ( x = ( W splice <. I , ( I + 2 ) , (/) >. ) -> ( G gsum x ) = ( G gsum ( W splice <. I , ( I + 2 ) , (/) >. ) ) ) |
|
| 111 | 110 | eqeq1d | |- ( x = ( W splice <. I , ( I + 2 ) , (/) >. ) -> ( ( G gsum x ) = ( _I |` D ) <-> ( G gsum ( W splice <. I , ( I + 2 ) , (/) >. ) ) = ( _I |` D ) ) ) |
| 112 | 109 111 | anbi12d | |- ( x = ( W splice <. I , ( I + 2 ) , (/) >. ) -> ( ( ( # ` x ) = ( L - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) <-> ( ( # ` ( W splice <. I , ( I + 2 ) , (/) >. ) ) = ( L - 2 ) /\ ( G gsum ( W splice <. I , ( I + 2 ) , (/) >. ) ) = ( _I |` D ) ) ) ) |
| 113 | 112 | rspcev | |- ( ( ( W splice <. I , ( I + 2 ) , (/) >. ) e. Word T /\ ( ( # ` ( W splice <. I , ( I + 2 ) , (/) >. ) ) = ( L - 2 ) /\ ( G gsum ( W splice <. I , ( I + 2 ) , (/) >. ) ) = ( _I |` D ) ) ) -> E. x e. Word T ( ( # ` x ) = ( L - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) |
| 114 | 14 56 108 113 | syl12anc | |- ( ( ph /\ ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) -> E. x e. Word T ( ( # ` x ) = ( L - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) |
| 115 | 10 | adantr | |- ( ( ph /\ ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) -> -. E. x e. Word T ( ( # ` x ) = ( L - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) |
| 116 | 114 115 | pm2.21dd | |- ( ( ph /\ ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) -> E. w e. Word T ( ( ( G gsum w ) = ( _I |` D ) /\ ( # ` w ) = L ) /\ ( ( I + 1 ) e. ( 0 ..^ L ) /\ A e. dom ( ( w ` ( I + 1 ) ) \ _I ) /\ A. j e. ( 0 ..^ ( I + 1 ) ) -. A e. dom ( ( w ` j ) \ _I ) ) ) ) |
| 117 | 116 | ex | |- ( ph -> ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) -> E. w e. Word T ( ( ( G gsum w ) = ( _I |` D ) /\ ( # ` w ) = L ) /\ ( ( I + 1 ) e. ( 0 ..^ L ) /\ A e. dom ( ( w ` ( I + 1 ) ) \ _I ) /\ A. j e. ( 0 ..^ ( I + 1 ) ) -. A e. dom ( ( w ` j ) \ _I ) ) ) ) ) |
| 118 | 4 | adantr | |- ( ( ph /\ ( r e. T /\ s e. T ) ) -> W e. Word T ) |
| 119 | simprl | |- ( ( ph /\ ( r e. T /\ s e. T ) ) -> r e. T ) |
|
| 120 | simprr | |- ( ( ph /\ ( r e. T /\ s e. T ) ) -> s e. T ) |
|
| 121 | 119 120 | s2cld | |- ( ( ph /\ ( r e. T /\ s e. T ) ) -> <" r s "> e. Word T ) |
| 122 | splcl | |- ( ( W e. Word T /\ <" r s "> e. Word T ) -> ( W splice <. I , ( I + 2 ) , <" r s "> >. ) e. Word T ) |
|
| 123 | 118 121 122 | syl2anc | |- ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( W splice <. I , ( I + 2 ) , <" r s "> >. ) e. Word T ) |
| 124 | 123 | adantrr | |- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( W splice <. I , ( I + 2 ) , <" r s "> >. ) e. Word T ) |
| 125 | 64 | adantr | |- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> G e. Mnd ) |
| 126 | 69 | adantr | |- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> W e. Word ( Base ` G ) ) |
| 127 | 26 | adantr | |- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> I e. ( 0 ... ( I + 2 ) ) ) |
| 128 | 37 | adantr | |- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( I + 2 ) e. ( 0 ... ( # ` W ) ) ) |
| 129 | 68 121 | sselid | |- ( ( ph /\ ( r e. T /\ s e. T ) ) -> <" r s "> e. Word ( Base ` G ) ) |
| 130 | 129 | adantrr | |- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> <" r s "> e. Word ( Base ` G ) ) |
| 131 | 74 | adantr | |- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( W substr <. I , ( I + 2 ) >. ) e. Word ( Base ` G ) ) |
| 132 | simprr1 | |- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) ) |
|
| 133 | 96 | adantr | |- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( G gsum ( W substr <. I , ( I + 2 ) >. ) ) = ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) ) |
| 134 | 64 | adantr | |- ( ( ph /\ ( r e. T /\ s e. T ) ) -> G e. Mnd ) |
| 135 | 66 | a1i | |- ( ph -> T C_ ( Base ` G ) ) |
| 136 | 135 | sselda | |- ( ( ph /\ r e. T ) -> r e. ( Base ` G ) ) |
| 137 | 136 | adantrr | |- ( ( ph /\ ( r e. T /\ s e. T ) ) -> r e. ( Base ` G ) ) |
| 138 | 135 | sselda | |- ( ( ph /\ s e. T ) -> s e. ( Base ` G ) ) |
| 139 | 138 | adantrl | |- ( ( ph /\ ( r e. T /\ s e. T ) ) -> s e. ( Base ` G ) ) |
| 140 | 61 91 | gsumws2 | |- ( ( G e. Mnd /\ r e. ( Base ` G ) /\ s e. ( Base ` G ) ) -> ( G gsum <" r s "> ) = ( r ( +g ` G ) s ) ) |
| 141 | 134 137 139 140 | syl3anc | |- ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( G gsum <" r s "> ) = ( r ( +g ` G ) s ) ) |
| 142 | 1 61 91 | symgov | |- ( ( r e. ( Base ` G ) /\ s e. ( Base ` G ) ) -> ( r ( +g ` G ) s ) = ( r o. s ) ) |
| 143 | 137 139 142 | syl2anc | |- ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( r ( +g ` G ) s ) = ( r o. s ) ) |
| 144 | 141 143 | eqtrd | |- ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( G gsum <" r s "> ) = ( r o. s ) ) |
| 145 | 144 | adantrr | |- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( G gsum <" r s "> ) = ( r o. s ) ) |
| 146 | 132 133 145 | 3eqtr4rd | |- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( G gsum <" r s "> ) = ( G gsum ( W substr <. I , ( I + 2 ) >. ) ) ) |
| 147 | 61 125 126 127 128 130 131 146 | gsumspl | |- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( G gsum ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ) = ( G gsum ( W splice <. I , ( I + 2 ) , ( W substr <. I , ( I + 2 ) >. ) >. ) ) ) |
| 148 | 59 | adantr | |- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( G gsum ( W splice <. I , ( I + 2 ) , ( W substr <. I , ( I + 2 ) >. ) >. ) ) = ( G gsum W ) ) |
| 149 | 5 | adantr | |- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( G gsum W ) = ( _I |` D ) ) |
| 150 | 147 148 149 | 3eqtrd | |- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( G gsum ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ) = ( _I |` D ) ) |
| 151 | 26 | adantr | |- ( ( ph /\ ( r e. T /\ s e. T ) ) -> I e. ( 0 ... ( I + 2 ) ) ) |
| 152 | 37 | adantr | |- ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( I + 2 ) e. ( 0 ... ( # ` W ) ) ) |
| 153 | 118 151 152 121 | spllen | |- ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( # ` ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ) = ( ( # ` W ) + ( ( # ` <" r s "> ) - ( ( I + 2 ) - I ) ) ) ) |
| 154 | s2len | |- ( # ` <" r s "> ) = 2 |
|
| 155 | 154 | oveq1i | |- ( ( # ` <" r s "> ) - ( ( I + 2 ) - I ) ) = ( 2 - ( ( I + 2 ) - I ) ) |
| 156 | 46 | oveq2d | |- ( ph -> ( 2 - ( ( I + 2 ) - I ) ) = ( 2 - 2 ) ) |
| 157 | 44 | subidi | |- ( 2 - 2 ) = 0 |
| 158 | 156 157 | eqtrdi | |- ( ph -> ( 2 - ( ( I + 2 ) - I ) ) = 0 ) |
| 159 | 155 158 | eqtrid | |- ( ph -> ( ( # ` <" r s "> ) - ( ( I + 2 ) - I ) ) = 0 ) |
| 160 | 159 | oveq2d | |- ( ph -> ( ( # ` W ) + ( ( # ` <" r s "> ) - ( ( I + 2 ) - I ) ) ) = ( ( # ` W ) + 0 ) ) |
| 161 | 6 52 | eqeltrd | |- ( ph -> ( # ` W ) e. CC ) |
| 162 | 161 | addridd | |- ( ph -> ( ( # ` W ) + 0 ) = ( # ` W ) ) |
| 163 | 160 162 6 | 3eqtrd | |- ( ph -> ( ( # ` W ) + ( ( # ` <" r s "> ) - ( ( I + 2 ) - I ) ) ) = L ) |
| 164 | 163 | adantr | |- ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( ( # ` W ) + ( ( # ` <" r s "> ) - ( ( I + 2 ) - I ) ) ) = L ) |
| 165 | 153 164 | eqtrd | |- ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( # ` ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ) = L ) |
| 166 | 165 | adantrr | |- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( # ` ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ) = L ) |
| 167 | 150 166 | jca | |- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( ( G gsum ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ) = ( _I |` D ) /\ ( # ` ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ) = L ) ) |
| 168 | 27 | adantr | |- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( I + 1 ) e. ( 0 ..^ L ) ) |
| 169 | simprr2 | |- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> A e. dom ( s \ _I ) ) |
|
| 170 | 1nn0 | |- 1 e. NN0 |
|
| 171 | 2nn | |- 2 e. NN |
|
| 172 | 1lt2 | |- 1 < 2 |
|
| 173 | elfzo0 | |- ( 1 e. ( 0 ..^ 2 ) <-> ( 1 e. NN0 /\ 2 e. NN /\ 1 < 2 ) ) |
|
| 174 | 170 171 172 173 | mpbir3an | |- 1 e. ( 0 ..^ 2 ) |
| 175 | 154 | oveq2i | |- ( 0 ..^ ( # ` <" r s "> ) ) = ( 0 ..^ 2 ) |
| 176 | 174 175 | eleqtrri | |- 1 e. ( 0 ..^ ( # ` <" r s "> ) ) |
| 177 | 176 | a1i | |- ( ( ph /\ ( r e. T /\ s e. T ) ) -> 1 e. ( 0 ..^ ( # ` <" r s "> ) ) ) |
| 178 | 118 151 152 121 177 | splfv2a | |- ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` ( I + 1 ) ) = ( <" r s "> ` 1 ) ) |
| 179 | s2fv1 | |- ( s e. T -> ( <" r s "> ` 1 ) = s ) |
|
| 180 | 179 | ad2antll | |- ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( <" r s "> ` 1 ) = s ) |
| 181 | 178 180 | eqtrd | |- ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` ( I + 1 ) ) = s ) |
| 182 | 181 | adantrr | |- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` ( I + 1 ) ) = s ) |
| 183 | 182 | difeq1d | |- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` ( I + 1 ) ) \ _I ) = ( s \ _I ) ) |
| 184 | 183 | dmeqd | |- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` ( I + 1 ) ) \ _I ) = dom ( s \ _I ) ) |
| 185 | 169 184 | eleqtrrd | |- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` ( I + 1 ) ) \ _I ) ) |
| 186 | fzosplitsni | |- ( I e. ( ZZ>= ` 0 ) -> ( j e. ( 0 ..^ ( I + 1 ) ) <-> ( j e. ( 0 ..^ I ) \/ j = I ) ) ) |
|
| 187 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 188 | 186 187 | eleq2s | |- ( I e. NN0 -> ( j e. ( 0 ..^ ( I + 1 ) ) <-> ( j e. ( 0 ..^ I ) \/ j = I ) ) ) |
| 189 | 18 188 | syl | |- ( ph -> ( j e. ( 0 ..^ ( I + 1 ) ) <-> ( j e. ( 0 ..^ I ) \/ j = I ) ) ) |
| 190 | 189 | adantr | |- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( j e. ( 0 ..^ ( I + 1 ) ) <-> ( j e. ( 0 ..^ I ) \/ j = I ) ) ) |
| 191 | fveq2 | |- ( k = j -> ( W ` k ) = ( W ` j ) ) |
|
| 192 | 191 | difeq1d | |- ( k = j -> ( ( W ` k ) \ _I ) = ( ( W ` j ) \ _I ) ) |
| 193 | 192 | dmeqd | |- ( k = j -> dom ( ( W ` k ) \ _I ) = dom ( ( W ` j ) \ _I ) ) |
| 194 | 193 | eleq2d | |- ( k = j -> ( A e. dom ( ( W ` k ) \ _I ) <-> A e. dom ( ( W ` j ) \ _I ) ) ) |
| 195 | 194 | notbid | |- ( k = j -> ( -. A e. dom ( ( W ` k ) \ _I ) <-> -. A e. dom ( ( W ` j ) \ _I ) ) ) |
| 196 | 195 | rspccva | |- ( ( A. k e. ( 0 ..^ I ) -. A e. dom ( ( W ` k ) \ _I ) /\ j e. ( 0 ..^ I ) ) -> -. A e. dom ( ( W ` j ) \ _I ) ) |
| 197 | 9 196 | sylan | |- ( ( ph /\ j e. ( 0 ..^ I ) ) -> -. A e. dom ( ( W ` j ) \ _I ) ) |
| 198 | 197 | adantlr | |- ( ( ( ph /\ ( r e. T /\ s e. T ) ) /\ j e. ( 0 ..^ I ) ) -> -. A e. dom ( ( W ` j ) \ _I ) ) |
| 199 | 4 | ad2antrr | |- ( ( ( ph /\ ( r e. T /\ s e. T ) ) /\ j e. ( 0 ..^ I ) ) -> W e. Word T ) |
| 200 | 26 | ad2antrr | |- ( ( ( ph /\ ( r e. T /\ s e. T ) ) /\ j e. ( 0 ..^ I ) ) -> I e. ( 0 ... ( I + 2 ) ) ) |
| 201 | 37 | ad2antrr | |- ( ( ( ph /\ ( r e. T /\ s e. T ) ) /\ j e. ( 0 ..^ I ) ) -> ( I + 2 ) e. ( 0 ... ( # ` W ) ) ) |
| 202 | 121 | adantr | |- ( ( ( ph /\ ( r e. T /\ s e. T ) ) /\ j e. ( 0 ..^ I ) ) -> <" r s "> e. Word T ) |
| 203 | simpr | |- ( ( ( ph /\ ( r e. T /\ s e. T ) ) /\ j e. ( 0 ..^ I ) ) -> j e. ( 0 ..^ I ) ) |
|
| 204 | 199 200 201 202 203 | splfv1 | |- ( ( ( ph /\ ( r e. T /\ s e. T ) ) /\ j e. ( 0 ..^ I ) ) -> ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) = ( W ` j ) ) |
| 205 | 204 | difeq1d | |- ( ( ( ph /\ ( r e. T /\ s e. T ) ) /\ j e. ( 0 ..^ I ) ) -> ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) = ( ( W ` j ) \ _I ) ) |
| 206 | 205 | dmeqd | |- ( ( ( ph /\ ( r e. T /\ s e. T ) ) /\ j e. ( 0 ..^ I ) ) -> dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) = dom ( ( W ` j ) \ _I ) ) |
| 207 | 198 206 | neleqtrrd | |- ( ( ( ph /\ ( r e. T /\ s e. T ) ) /\ j e. ( 0 ..^ I ) ) -> -. A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) ) |
| 208 | 207 | ex | |- ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( j e. ( 0 ..^ I ) -> -. A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) ) ) |
| 209 | 208 | adantrr | |- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( j e. ( 0 ..^ I ) -> -. A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) ) ) |
| 210 | simprr3 | |- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> -. A e. dom ( r \ _I ) ) |
|
| 211 | 0nn0 | |- 0 e. NN0 |
|
| 212 | 2pos | |- 0 < 2 |
|
| 213 | elfzo0 | |- ( 0 e. ( 0 ..^ 2 ) <-> ( 0 e. NN0 /\ 2 e. NN /\ 0 < 2 ) ) |
|
| 214 | 211 171 212 213 | mpbir3an | |- 0 e. ( 0 ..^ 2 ) |
| 215 | 214 175 | eleqtrri | |- 0 e. ( 0 ..^ ( # ` <" r s "> ) ) |
| 216 | 215 | a1i | |- ( ( ph /\ ( r e. T /\ s e. T ) ) -> 0 e. ( 0 ..^ ( # ` <" r s "> ) ) ) |
| 217 | 118 151 152 121 216 | splfv2a | |- ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` ( I + 0 ) ) = ( <" r s "> ` 0 ) ) |
| 218 | 32 | addridd | |- ( ph -> ( I + 0 ) = I ) |
| 219 | 218 | adantr | |- ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( I + 0 ) = I ) |
| 220 | 219 | fveq2d | |- ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` ( I + 0 ) ) = ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` I ) ) |
| 221 | s2fv0 | |- ( r e. T -> ( <" r s "> ` 0 ) = r ) |
|
| 222 | 221 | ad2antrl | |- ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( <" r s "> ` 0 ) = r ) |
| 223 | 217 220 222 | 3eqtr3d | |- ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` I ) = r ) |
| 224 | 223 | difeq1d | |- ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` I ) \ _I ) = ( r \ _I ) ) |
| 225 | 224 | dmeqd | |- ( ( ph /\ ( r e. T /\ s e. T ) ) -> dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` I ) \ _I ) = dom ( r \ _I ) ) |
| 226 | 225 | eleq2d | |- ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` I ) \ _I ) <-> A e. dom ( r \ _I ) ) ) |
| 227 | 226 | adantrr | |- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` I ) \ _I ) <-> A e. dom ( r \ _I ) ) ) |
| 228 | 210 227 | mtbird | |- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> -. A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` I ) \ _I ) ) |
| 229 | fveq2 | |- ( j = I -> ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) = ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` I ) ) |
|
| 230 | 229 | difeq1d | |- ( j = I -> ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) = ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` I ) \ _I ) ) |
| 231 | 230 | dmeqd | |- ( j = I -> dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) = dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` I ) \ _I ) ) |
| 232 | 231 | eleq2d | |- ( j = I -> ( A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) <-> A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` I ) \ _I ) ) ) |
| 233 | 232 | notbid | |- ( j = I -> ( -. A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) <-> -. A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` I ) \ _I ) ) ) |
| 234 | 228 233 | syl5ibrcom | |- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( j = I -> -. A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) ) ) |
| 235 | 209 234 | jaod | |- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( ( j e. ( 0 ..^ I ) \/ j = I ) -> -. A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) ) ) |
| 236 | 190 235 | sylbid | |- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( j e. ( 0 ..^ ( I + 1 ) ) -> -. A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) ) ) |
| 237 | 236 | ralrimiv | |- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> A. j e. ( 0 ..^ ( I + 1 ) ) -. A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) ) |
| 238 | 168 185 237 | 3jca | |- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( ( I + 1 ) e. ( 0 ..^ L ) /\ A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` ( I + 1 ) ) \ _I ) /\ A. j e. ( 0 ..^ ( I + 1 ) ) -. A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) ) ) |
| 239 | oveq2 | |- ( w = ( W splice <. I , ( I + 2 ) , <" r s "> >. ) -> ( G gsum w ) = ( G gsum ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ) ) |
|
| 240 | 239 | eqeq1d | |- ( w = ( W splice <. I , ( I + 2 ) , <" r s "> >. ) -> ( ( G gsum w ) = ( _I |` D ) <-> ( G gsum ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ) = ( _I |` D ) ) ) |
| 241 | fveqeq2 | |- ( w = ( W splice <. I , ( I + 2 ) , <" r s "> >. ) -> ( ( # ` w ) = L <-> ( # ` ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ) = L ) ) |
|
| 242 | 240 241 | anbi12d | |- ( w = ( W splice <. I , ( I + 2 ) , <" r s "> >. ) -> ( ( ( G gsum w ) = ( _I |` D ) /\ ( # ` w ) = L ) <-> ( ( G gsum ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ) = ( _I |` D ) /\ ( # ` ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ) = L ) ) ) |
| 243 | fveq1 | |- ( w = ( W splice <. I , ( I + 2 ) , <" r s "> >. ) -> ( w ` ( I + 1 ) ) = ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` ( I + 1 ) ) ) |
|
| 244 | 243 | difeq1d | |- ( w = ( W splice <. I , ( I + 2 ) , <" r s "> >. ) -> ( ( w ` ( I + 1 ) ) \ _I ) = ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` ( I + 1 ) ) \ _I ) ) |
| 245 | 244 | dmeqd | |- ( w = ( W splice <. I , ( I + 2 ) , <" r s "> >. ) -> dom ( ( w ` ( I + 1 ) ) \ _I ) = dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` ( I + 1 ) ) \ _I ) ) |
| 246 | 245 | eleq2d | |- ( w = ( W splice <. I , ( I + 2 ) , <" r s "> >. ) -> ( A e. dom ( ( w ` ( I + 1 ) ) \ _I ) <-> A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` ( I + 1 ) ) \ _I ) ) ) |
| 247 | fveq1 | |- ( w = ( W splice <. I , ( I + 2 ) , <" r s "> >. ) -> ( w ` j ) = ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) ) |
|
| 248 | 247 | difeq1d | |- ( w = ( W splice <. I , ( I + 2 ) , <" r s "> >. ) -> ( ( w ` j ) \ _I ) = ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) ) |
| 249 | 248 | dmeqd | |- ( w = ( W splice <. I , ( I + 2 ) , <" r s "> >. ) -> dom ( ( w ` j ) \ _I ) = dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) ) |
| 250 | 249 | eleq2d | |- ( w = ( W splice <. I , ( I + 2 ) , <" r s "> >. ) -> ( A e. dom ( ( w ` j ) \ _I ) <-> A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) ) ) |
| 251 | 250 | notbid | |- ( w = ( W splice <. I , ( I + 2 ) , <" r s "> >. ) -> ( -. A e. dom ( ( w ` j ) \ _I ) <-> -. A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) ) ) |
| 252 | 251 | ralbidv | |- ( w = ( W splice <. I , ( I + 2 ) , <" r s "> >. ) -> ( A. j e. ( 0 ..^ ( I + 1 ) ) -. A e. dom ( ( w ` j ) \ _I ) <-> A. j e. ( 0 ..^ ( I + 1 ) ) -. A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) ) ) |
| 253 | 246 252 | 3anbi23d | |- ( w = ( W splice <. I , ( I + 2 ) , <" r s "> >. ) -> ( ( ( I + 1 ) e. ( 0 ..^ L ) /\ A e. dom ( ( w ` ( I + 1 ) ) \ _I ) /\ A. j e. ( 0 ..^ ( I + 1 ) ) -. A e. dom ( ( w ` j ) \ _I ) ) <-> ( ( I + 1 ) e. ( 0 ..^ L ) /\ A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` ( I + 1 ) ) \ _I ) /\ A. j e. ( 0 ..^ ( I + 1 ) ) -. A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) ) ) ) |
| 254 | 242 253 | anbi12d | |- ( w = ( W splice <. I , ( I + 2 ) , <" r s "> >. ) -> ( ( ( ( G gsum w ) = ( _I |` D ) /\ ( # ` w ) = L ) /\ ( ( I + 1 ) e. ( 0 ..^ L ) /\ A e. dom ( ( w ` ( I + 1 ) ) \ _I ) /\ A. j e. ( 0 ..^ ( I + 1 ) ) -. A e. dom ( ( w ` j ) \ _I ) ) ) <-> ( ( ( G gsum ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ) = ( _I |` D ) /\ ( # ` ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ) = L ) /\ ( ( I + 1 ) e. ( 0 ..^ L ) /\ A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` ( I + 1 ) ) \ _I ) /\ A. j e. ( 0 ..^ ( I + 1 ) ) -. A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) ) ) ) ) |
| 255 | 254 | rspcev | |- ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) e. Word T /\ ( ( ( G gsum ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ) = ( _I |` D ) /\ ( # ` ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ) = L ) /\ ( ( I + 1 ) e. ( 0 ..^ L ) /\ A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` ( I + 1 ) ) \ _I ) /\ A. j e. ( 0 ..^ ( I + 1 ) ) -. A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) ) ) ) -> E. w e. Word T ( ( ( G gsum w ) = ( _I |` D ) /\ ( # ` w ) = L ) /\ ( ( I + 1 ) e. ( 0 ..^ L ) /\ A e. dom ( ( w ` ( I + 1 ) ) \ _I ) /\ A. j e. ( 0 ..^ ( I + 1 ) ) -. A e. dom ( ( w ` j ) \ _I ) ) ) ) |
| 256 | 124 167 238 255 | syl12anc | |- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> E. w e. Word T ( ( ( G gsum w ) = ( _I |` D ) /\ ( # ` w ) = L ) /\ ( ( I + 1 ) e. ( 0 ..^ L ) /\ A e. dom ( ( w ` ( I + 1 ) ) \ _I ) /\ A. j e. ( 0 ..^ ( I + 1 ) ) -. A e. dom ( ( w ` j ) \ _I ) ) ) ) |
| 257 | 256 | expr | |- ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) -> E. w e. Word T ( ( ( G gsum w ) = ( _I |` D ) /\ ( # ` w ) = L ) /\ ( ( I + 1 ) e. ( 0 ..^ L ) /\ A e. dom ( ( w ` ( I + 1 ) ) \ _I ) /\ A. j e. ( 0 ..^ ( I + 1 ) ) -. A e. dom ( ( w ` j ) \ _I ) ) ) ) ) |
| 258 | 257 | rexlimdvva | |- ( ph -> ( E. r e. T E. s e. T ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) -> E. w e. Word T ( ( ( G gsum w ) = ( _I |` D ) /\ ( # ` w ) = L ) /\ ( ( I + 1 ) e. ( 0 ..^ L ) /\ A e. dom ( ( w ` ( I + 1 ) ) \ _I ) /\ A. j e. ( 0 ..^ ( I + 1 ) ) -. A e. dom ( ( w ` j ) \ _I ) ) ) ) ) |
| 259 | 2 3 87 89 8 | psgnunilem1 | |- ( ph -> ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) \/ E. r e. T E. s e. T ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) |
| 260 | 117 258 259 | mpjaod | |- ( ph -> E. w e. Word T ( ( ( G gsum w ) = ( _I |` D ) /\ ( # ` w ) = L ) /\ ( ( I + 1 ) e. ( 0 ..^ L ) /\ A e. dom ( ( w ` ( I + 1 ) ) \ _I ) /\ A. j e. ( 0 ..^ ( I + 1 ) ) -. A e. dom ( ( w ` j ) \ _I ) ) ) ) |