This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the empty group sum. (Contributed by Mario Carneiro, 7-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | gsum0.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| Assertion | gsum0 | ⊢ ( 𝐺 Σg ∅ ) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsum0.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 3 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 4 | eqid | ⊢ { 𝑥 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑦 ) } = { 𝑥 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑦 ) } | |
| 5 | id | ⊢ ( 𝐺 ∈ V → 𝐺 ∈ V ) | |
| 6 | 0ex | ⊢ ∅ ∈ V | |
| 7 | 6 | a1i | ⊢ ( 𝐺 ∈ V → ∅ ∈ V ) |
| 8 | f0 | ⊢ ∅ : ∅ ⟶ { 𝑥 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑦 ) } | |
| 9 | 8 | a1i | ⊢ ( 𝐺 ∈ V → ∅ : ∅ ⟶ { 𝑥 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑦 ) } ) |
| 10 | 2 1 3 4 5 7 9 | gsumval1 | ⊢ ( 𝐺 ∈ V → ( 𝐺 Σg ∅ ) = 0 ) |
| 11 | df-gsum | ⊢ Σg = ( 𝑤 ∈ V , 𝑓 ∈ V ↦ ⦋ { 𝑥 ∈ ( Base ‘ 𝑤 ) ∣ ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝑤 ) 𝑥 ) = 𝑦 ) } / 𝑜 ⦌ if ( ran 𝑓 ⊆ 𝑜 , ( 0g ‘ 𝑤 ) , if ( dom 𝑓 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝑓 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝑤 ) , 𝑓 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑔 [ ( ◡ 𝑓 “ ( V ∖ 𝑜 ) ) / 𝑦 ] ( 𝑔 : ( 1 ... ( ♯ ‘ 𝑦 ) ) –1-1-onto→ 𝑦 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝑤 ) , ( 𝑓 ∘ 𝑔 ) ) ‘ ( ♯ ‘ 𝑦 ) ) ) ) ) ) ) | |
| 12 | 11 | reldmmpo | ⊢ Rel dom Σg |
| 13 | 12 | ovprc1 | ⊢ ( ¬ 𝐺 ∈ V → ( 𝐺 Σg ∅ ) = ∅ ) |
| 14 | fvprc | ⊢ ( ¬ 𝐺 ∈ V → ( 0g ‘ 𝐺 ) = ∅ ) | |
| 15 | 1 14 | eqtrid | ⊢ ( ¬ 𝐺 ∈ V → 0 = ∅ ) |
| 16 | 13 15 | eqtr4d | ⊢ ( ¬ 𝐺 ∈ V → ( 𝐺 Σg ∅ ) = 0 ) |
| 17 | 10 16 | pm2.61i | ⊢ ( 𝐺 Σg ∅ ) = 0 |