This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The length of a splice. (Contributed by Stefan O'Rear, 23-Aug-2015) (Proof shortened by AV, 15-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | spllen.s | ⊢ ( 𝜑 → 𝑆 ∈ Word 𝐴 ) | |
| spllen.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 0 ... 𝑇 ) ) | ||
| spllen.t | ⊢ ( 𝜑 → 𝑇 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) | ||
| spllen.r | ⊢ ( 𝜑 → 𝑅 ∈ Word 𝐴 ) | ||
| Assertion | spllen | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝑆 splice 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) = ( ( ♯ ‘ 𝑆 ) + ( ( ♯ ‘ 𝑅 ) − ( 𝑇 − 𝐹 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spllen.s | ⊢ ( 𝜑 → 𝑆 ∈ Word 𝐴 ) | |
| 2 | spllen.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 0 ... 𝑇 ) ) | |
| 3 | spllen.t | ⊢ ( 𝜑 → 𝑇 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) | |
| 4 | spllen.r | ⊢ ( 𝜑 → 𝑅 ∈ Word 𝐴 ) | |
| 5 | splval | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝐹 ∈ ( 0 ... 𝑇 ) ∧ 𝑇 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ∧ 𝑅 ∈ Word 𝐴 ) ) → ( 𝑆 splice 〈 𝐹 , 𝑇 , 𝑅 〉 ) = ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ++ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ) | |
| 6 | 1 2 3 4 5 | syl13anc | ⊢ ( 𝜑 → ( 𝑆 splice 〈 𝐹 , 𝑇 , 𝑅 〉 ) = ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ++ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ) |
| 7 | 6 | fveq2d | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝑆 splice 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) = ( ♯ ‘ ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ++ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ) ) |
| 8 | pfxcl | ⊢ ( 𝑆 ∈ Word 𝐴 → ( 𝑆 prefix 𝐹 ) ∈ Word 𝐴 ) | |
| 9 | 1 8 | syl | ⊢ ( 𝜑 → ( 𝑆 prefix 𝐹 ) ∈ Word 𝐴 ) |
| 10 | ccatcl | ⊢ ( ( ( 𝑆 prefix 𝐹 ) ∈ Word 𝐴 ∧ 𝑅 ∈ Word 𝐴 ) → ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ∈ Word 𝐴 ) | |
| 11 | 9 4 10 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ∈ Word 𝐴 ) |
| 12 | swrdcl | ⊢ ( 𝑆 ∈ Word 𝐴 → ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ∈ Word 𝐴 ) | |
| 13 | 1 12 | syl | ⊢ ( 𝜑 → ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ∈ Word 𝐴 ) |
| 14 | ccatlen | ⊢ ( ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ∈ Word 𝐴 ∧ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ∈ Word 𝐴 ) → ( ♯ ‘ ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ++ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ) = ( ( ♯ ‘ ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ) + ( ♯ ‘ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ) ) | |
| 15 | 11 13 14 | syl2anc | ⊢ ( 𝜑 → ( ♯ ‘ ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ++ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ) = ( ( ♯ ‘ ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ) + ( ♯ ‘ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ) ) |
| 16 | lencl | ⊢ ( 𝑅 ∈ Word 𝐴 → ( ♯ ‘ 𝑅 ) ∈ ℕ0 ) | |
| 17 | 16 | nn0cnd | ⊢ ( 𝑅 ∈ Word 𝐴 → ( ♯ ‘ 𝑅 ) ∈ ℂ ) |
| 18 | 4 17 | syl | ⊢ ( 𝜑 → ( ♯ ‘ 𝑅 ) ∈ ℂ ) |
| 19 | elfzelz | ⊢ ( 𝐹 ∈ ( 0 ... 𝑇 ) → 𝐹 ∈ ℤ ) | |
| 20 | 19 | zcnd | ⊢ ( 𝐹 ∈ ( 0 ... 𝑇 ) → 𝐹 ∈ ℂ ) |
| 21 | 2 20 | syl | ⊢ ( 𝜑 → 𝐹 ∈ ℂ ) |
| 22 | 18 21 | addcld | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝑅 ) + 𝐹 ) ∈ ℂ ) |
| 23 | elfzel2 | ⊢ ( 𝑇 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) → ( ♯ ‘ 𝑆 ) ∈ ℤ ) | |
| 24 | 23 | zcnd | ⊢ ( 𝑇 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) → ( ♯ ‘ 𝑆 ) ∈ ℂ ) |
| 25 | 3 24 | syl | ⊢ ( 𝜑 → ( ♯ ‘ 𝑆 ) ∈ ℂ ) |
| 26 | elfzelz | ⊢ ( 𝑇 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) → 𝑇 ∈ ℤ ) | |
| 27 | 26 | zcnd | ⊢ ( 𝑇 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) → 𝑇 ∈ ℂ ) |
| 28 | 3 27 | syl | ⊢ ( 𝜑 → 𝑇 ∈ ℂ ) |
| 29 | 22 25 28 | addsub12d | ⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝑅 ) + 𝐹 ) + ( ( ♯ ‘ 𝑆 ) − 𝑇 ) ) = ( ( ♯ ‘ 𝑆 ) + ( ( ( ♯ ‘ 𝑅 ) + 𝐹 ) − 𝑇 ) ) ) |
| 30 | ccatlen | ⊢ ( ( ( 𝑆 prefix 𝐹 ) ∈ Word 𝐴 ∧ 𝑅 ∈ Word 𝐴 ) → ( ♯ ‘ ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ) = ( ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) + ( ♯ ‘ 𝑅 ) ) ) | |
| 31 | 9 4 30 | syl2anc | ⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ) = ( ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) + ( ♯ ‘ 𝑅 ) ) ) |
| 32 | elfzuz | ⊢ ( 𝐹 ∈ ( 0 ... 𝑇 ) → 𝐹 ∈ ( ℤ≥ ‘ 0 ) ) | |
| 33 | 2 32 | syl | ⊢ ( 𝜑 → 𝐹 ∈ ( ℤ≥ ‘ 0 ) ) |
| 34 | elfzuz3 | ⊢ ( 𝑇 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) → ( ♯ ‘ 𝑆 ) ∈ ( ℤ≥ ‘ 𝑇 ) ) | |
| 35 | 3 34 | syl | ⊢ ( 𝜑 → ( ♯ ‘ 𝑆 ) ∈ ( ℤ≥ ‘ 𝑇 ) ) |
| 36 | elfzuz3 | ⊢ ( 𝐹 ∈ ( 0 ... 𝑇 ) → 𝑇 ∈ ( ℤ≥ ‘ 𝐹 ) ) | |
| 37 | 2 36 | syl | ⊢ ( 𝜑 → 𝑇 ∈ ( ℤ≥ ‘ 𝐹 ) ) |
| 38 | uztrn | ⊢ ( ( ( ♯ ‘ 𝑆 ) ∈ ( ℤ≥ ‘ 𝑇 ) ∧ 𝑇 ∈ ( ℤ≥ ‘ 𝐹 ) ) → ( ♯ ‘ 𝑆 ) ∈ ( ℤ≥ ‘ 𝐹 ) ) | |
| 39 | 35 37 38 | syl2anc | ⊢ ( 𝜑 → ( ♯ ‘ 𝑆 ) ∈ ( ℤ≥ ‘ 𝐹 ) ) |
| 40 | elfzuzb | ⊢ ( 𝐹 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ↔ ( 𝐹 ∈ ( ℤ≥ ‘ 0 ) ∧ ( ♯ ‘ 𝑆 ) ∈ ( ℤ≥ ‘ 𝐹 ) ) ) | |
| 41 | 33 39 40 | sylanbrc | ⊢ ( 𝜑 → 𝐹 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) |
| 42 | pfxlen | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) = 𝐹 ) | |
| 43 | 1 41 42 | syl2anc | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) = 𝐹 ) |
| 44 | 43 | oveq1d | ⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) + ( ♯ ‘ 𝑅 ) ) = ( 𝐹 + ( ♯ ‘ 𝑅 ) ) ) |
| 45 | 21 18 | addcomd | ⊢ ( 𝜑 → ( 𝐹 + ( ♯ ‘ 𝑅 ) ) = ( ( ♯ ‘ 𝑅 ) + 𝐹 ) ) |
| 46 | 31 44 45 | 3eqtrd | ⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ) = ( ( ♯ ‘ 𝑅 ) + 𝐹 ) ) |
| 47 | elfzuz2 | ⊢ ( 𝑇 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) → ( ♯ ‘ 𝑆 ) ∈ ( ℤ≥ ‘ 0 ) ) | |
| 48 | eluzfz2 | ⊢ ( ( ♯ ‘ 𝑆 ) ∈ ( ℤ≥ ‘ 0 ) → ( ♯ ‘ 𝑆 ) ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) | |
| 49 | 3 47 48 | 3syl | ⊢ ( 𝜑 → ( ♯ ‘ 𝑆 ) ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) |
| 50 | swrdlen | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ∧ ( ♯ ‘ 𝑆 ) ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( ♯ ‘ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) = ( ( ♯ ‘ 𝑆 ) − 𝑇 ) ) | |
| 51 | 1 3 49 50 | syl3anc | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) = ( ( ♯ ‘ 𝑆 ) − 𝑇 ) ) |
| 52 | 46 51 | oveq12d | ⊢ ( 𝜑 → ( ( ♯ ‘ ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ) + ( ♯ ‘ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ) = ( ( ( ♯ ‘ 𝑅 ) + 𝐹 ) + ( ( ♯ ‘ 𝑆 ) − 𝑇 ) ) ) |
| 53 | 18 28 21 | subsub3d | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝑅 ) − ( 𝑇 − 𝐹 ) ) = ( ( ( ♯ ‘ 𝑅 ) + 𝐹 ) − 𝑇 ) ) |
| 54 | 53 | oveq2d | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝑆 ) + ( ( ♯ ‘ 𝑅 ) − ( 𝑇 − 𝐹 ) ) ) = ( ( ♯ ‘ 𝑆 ) + ( ( ( ♯ ‘ 𝑅 ) + 𝐹 ) − 𝑇 ) ) ) |
| 55 | 29 52 54 | 3eqtr4d | ⊢ ( 𝜑 → ( ( ♯ ‘ ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ) + ( ♯ ‘ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ) = ( ( ♯ ‘ 𝑆 ) + ( ( ♯ ‘ 𝑅 ) − ( 𝑇 − 𝐹 ) ) ) ) |
| 56 | 7 15 55 | 3eqtrd | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝑆 splice 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) = ( ( ♯ ‘ 𝑆 ) + ( ( ♯ ‘ 𝑅 ) − ( 𝑇 − 𝐹 ) ) ) ) |