This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relationship between subtraction and negative. Theorem I.3 of Apostol p. 18. (Contributed by NM, 21-Jan-1997) (Proof shortened by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | negsub | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + - 𝐵 ) = ( 𝐴 − 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-neg | ⊢ - 𝐵 = ( 0 − 𝐵 ) | |
| 2 | 1 | oveq2i | ⊢ ( 𝐴 + - 𝐵 ) = ( 𝐴 + ( 0 − 𝐵 ) ) |
| 3 | 2 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + - 𝐵 ) = ( 𝐴 + ( 0 − 𝐵 ) ) ) |
| 4 | 0cn | ⊢ 0 ∈ ℂ | |
| 5 | addsubass | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 0 ) − 𝐵 ) = ( 𝐴 + ( 0 − 𝐵 ) ) ) | |
| 6 | 4 5 | mp3an2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 0 ) − 𝐵 ) = ( 𝐴 + ( 0 − 𝐵 ) ) ) |
| 7 | simpl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐴 ∈ ℂ ) | |
| 8 | 7 | addridd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 0 ) = 𝐴 ) |
| 9 | 8 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 0 ) − 𝐵 ) = ( 𝐴 − 𝐵 ) ) |
| 10 | 3 6 9 | 3eqtr2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + - 𝐵 ) = ( 𝐴 − 𝐵 ) ) |