This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the group operation of the symmetric group on A . (Contributed by Paul Chapman, 25-Feb-2008) (Revised by Mario Carneiro, 28-Jan-2015) (Revised by AV, 30-Mar-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgov.1 | ⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) | |
| symgov.2 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| symgov.3 | ⊢ + = ( +g ‘ 𝐺 ) | ||
| Assertion | symgov | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) = ( 𝑋 ∘ 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgov.1 | ⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) | |
| 2 | symgov.2 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 3 | symgov.3 | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | eqid | ⊢ ( 𝐴 ↑m 𝐴 ) = ( 𝐴 ↑m 𝐴 ) | |
| 5 | 1 4 3 | symgplusg | ⊢ + = ( 𝑓 ∈ ( 𝐴 ↑m 𝐴 ) , 𝑔 ∈ ( 𝐴 ↑m 𝐴 ) ↦ ( 𝑓 ∘ 𝑔 ) ) |
| 6 | 5 | a1i | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → + = ( 𝑓 ∈ ( 𝐴 ↑m 𝐴 ) , 𝑔 ∈ ( 𝐴 ↑m 𝐴 ) ↦ ( 𝑓 ∘ 𝑔 ) ) ) |
| 7 | simpl | ⊢ ( ( 𝑓 = 𝑋 ∧ 𝑔 = 𝑌 ) → 𝑓 = 𝑋 ) | |
| 8 | simpr | ⊢ ( ( 𝑓 = 𝑋 ∧ 𝑔 = 𝑌 ) → 𝑔 = 𝑌 ) | |
| 9 | 7 8 | coeq12d | ⊢ ( ( 𝑓 = 𝑋 ∧ 𝑔 = 𝑌 ) → ( 𝑓 ∘ 𝑔 ) = ( 𝑋 ∘ 𝑌 ) ) |
| 10 | 9 | adantl | ⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑓 = 𝑋 ∧ 𝑔 = 𝑌 ) ) → ( 𝑓 ∘ 𝑔 ) = ( 𝑋 ∘ 𝑌 ) ) |
| 11 | 1 2 | symgbasmap | ⊢ ( 𝑋 ∈ 𝐵 → 𝑋 ∈ ( 𝐴 ↑m 𝐴 ) ) |
| 12 | 11 | adantr | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ ( 𝐴 ↑m 𝐴 ) ) |
| 13 | 1 2 | symgbasmap | ⊢ ( 𝑌 ∈ 𝐵 → 𝑌 ∈ ( 𝐴 ↑m 𝐴 ) ) |
| 14 | 13 | adantl | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ ( 𝐴 ↑m 𝐴 ) ) |
| 15 | coexg | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∘ 𝑌 ) ∈ V ) | |
| 16 | 6 10 12 14 15 | ovmpod | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) = ( 𝑋 ∘ 𝑌 ) ) |