This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extract two adjacent symbols from a word. (Contributed by Stefan O'Rear, 23-Aug-2015) (Revised by Mario Carneiro, 26-Feb-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | swrds2 | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐼 ∈ ℕ0 ∧ ( 𝐼 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 2 ) 〉 ) = 〈“ ( 𝑊 ‘ 𝐼 ) ( 𝑊 ‘ ( 𝐼 + 1 ) ) ”〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-s2 | ⊢ 〈“ ( 𝑊 ‘ 𝐼 ) ( 𝑊 ‘ ( 𝐼 + 1 ) ) ”〉 = ( 〈“ ( 𝑊 ‘ 𝐼 ) ”〉 ++ 〈“ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ”〉 ) | |
| 2 | simp1 | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐼 ∈ ℕ0 ∧ ( 𝐼 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑊 ∈ Word 𝐴 ) | |
| 3 | simp2 | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐼 ∈ ℕ0 ∧ ( 𝐼 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝐼 ∈ ℕ0 ) | |
| 4 | elfzo0 | ⊢ ( ( 𝐼 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ ( ( 𝐼 + 1 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ ( 𝐼 + 1 ) < ( ♯ ‘ 𝑊 ) ) ) | |
| 5 | 4 | simp2bi | ⊢ ( ( 𝐼 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) |
| 6 | 5 | 3ad2ant3 | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐼 ∈ ℕ0 ∧ ( 𝐼 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) |
| 7 | 3 | nn0red | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐼 ∈ ℕ0 ∧ ( 𝐼 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝐼 ∈ ℝ ) |
| 8 | peano2nn0 | ⊢ ( 𝐼 ∈ ℕ0 → ( 𝐼 + 1 ) ∈ ℕ0 ) | |
| 9 | 3 8 | syl | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐼 ∈ ℕ0 ∧ ( 𝐼 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝐼 + 1 ) ∈ ℕ0 ) |
| 10 | 9 | nn0red | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐼 ∈ ℕ0 ∧ ( 𝐼 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝐼 + 1 ) ∈ ℝ ) |
| 11 | 6 | nnred | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐼 ∈ ℕ0 ∧ ( 𝐼 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ♯ ‘ 𝑊 ) ∈ ℝ ) |
| 12 | 7 | lep1d | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐼 ∈ ℕ0 ∧ ( 𝐼 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝐼 ≤ ( 𝐼 + 1 ) ) |
| 13 | elfzolt2 | ⊢ ( ( 𝐼 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( 𝐼 + 1 ) < ( ♯ ‘ 𝑊 ) ) | |
| 14 | 13 | 3ad2ant3 | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐼 ∈ ℕ0 ∧ ( 𝐼 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝐼 + 1 ) < ( ♯ ‘ 𝑊 ) ) |
| 15 | 7 10 11 12 14 | lelttrd | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐼 ∈ ℕ0 ∧ ( 𝐼 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝐼 < ( ♯ ‘ 𝑊 ) ) |
| 16 | elfzo0 | ⊢ ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝐼 < ( ♯ ‘ 𝑊 ) ) ) | |
| 17 | 3 6 15 16 | syl3anbrc | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐼 ∈ ℕ0 ∧ ( 𝐼 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 18 | swrds1 | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 1 ) 〉 ) = 〈“ ( 𝑊 ‘ 𝐼 ) ”〉 ) | |
| 19 | 2 17 18 | syl2anc | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐼 ∈ ℕ0 ∧ ( 𝐼 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 1 ) 〉 ) = 〈“ ( 𝑊 ‘ 𝐼 ) ”〉 ) |
| 20 | nn0cn | ⊢ ( 𝐼 ∈ ℕ0 → 𝐼 ∈ ℂ ) | |
| 21 | 20 | 3ad2ant2 | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐼 ∈ ℕ0 ∧ ( 𝐼 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝐼 ∈ ℂ ) |
| 22 | df-2 | ⊢ 2 = ( 1 + 1 ) | |
| 23 | 22 | oveq2i | ⊢ ( 𝐼 + 2 ) = ( 𝐼 + ( 1 + 1 ) ) |
| 24 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 25 | addass | ⊢ ( ( 𝐼 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝐼 + 1 ) + 1 ) = ( 𝐼 + ( 1 + 1 ) ) ) | |
| 26 | 24 24 25 | mp3an23 | ⊢ ( 𝐼 ∈ ℂ → ( ( 𝐼 + 1 ) + 1 ) = ( 𝐼 + ( 1 + 1 ) ) ) |
| 27 | 23 26 | eqtr4id | ⊢ ( 𝐼 ∈ ℂ → ( 𝐼 + 2 ) = ( ( 𝐼 + 1 ) + 1 ) ) |
| 28 | 21 27 | syl | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐼 ∈ ℕ0 ∧ ( 𝐼 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝐼 + 2 ) = ( ( 𝐼 + 1 ) + 1 ) ) |
| 29 | 28 | opeq2d | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐼 ∈ ℕ0 ∧ ( 𝐼 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 〈 ( 𝐼 + 1 ) , ( 𝐼 + 2 ) 〉 = 〈 ( 𝐼 + 1 ) , ( ( 𝐼 + 1 ) + 1 ) 〉 ) |
| 30 | 29 | oveq2d | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐼 ∈ ℕ0 ∧ ( 𝐼 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 substr 〈 ( 𝐼 + 1 ) , ( 𝐼 + 2 ) 〉 ) = ( 𝑊 substr 〈 ( 𝐼 + 1 ) , ( ( 𝐼 + 1 ) + 1 ) 〉 ) ) |
| 31 | swrds1 | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ ( 𝐼 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 substr 〈 ( 𝐼 + 1 ) , ( ( 𝐼 + 1 ) + 1 ) 〉 ) = 〈“ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ”〉 ) | |
| 32 | 31 | 3adant2 | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐼 ∈ ℕ0 ∧ ( 𝐼 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 substr 〈 ( 𝐼 + 1 ) , ( ( 𝐼 + 1 ) + 1 ) 〉 ) = 〈“ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ”〉 ) |
| 33 | 30 32 | eqtrd | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐼 ∈ ℕ0 ∧ ( 𝐼 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 substr 〈 ( 𝐼 + 1 ) , ( 𝐼 + 2 ) 〉 ) = 〈“ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ”〉 ) |
| 34 | 19 33 | oveq12d | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐼 ∈ ℕ0 ∧ ( 𝐼 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 1 ) 〉 ) ++ ( 𝑊 substr 〈 ( 𝐼 + 1 ) , ( 𝐼 + 2 ) 〉 ) ) = ( 〈“ ( 𝑊 ‘ 𝐼 ) ”〉 ++ 〈“ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ”〉 ) ) |
| 35 | 1 34 | eqtr4id | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐼 ∈ ℕ0 ∧ ( 𝐼 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 〈“ ( 𝑊 ‘ 𝐼 ) ( 𝑊 ‘ ( 𝐼 + 1 ) ) ”〉 = ( ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 1 ) 〉 ) ++ ( 𝑊 substr 〈 ( 𝐼 + 1 ) , ( 𝐼 + 2 ) 〉 ) ) ) |
| 36 | elfz2nn0 | ⊢ ( 𝐼 ∈ ( 0 ... ( 𝐼 + 1 ) ) ↔ ( 𝐼 ∈ ℕ0 ∧ ( 𝐼 + 1 ) ∈ ℕ0 ∧ 𝐼 ≤ ( 𝐼 + 1 ) ) ) | |
| 37 | 3 9 12 36 | syl3anbrc | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐼 ∈ ℕ0 ∧ ( 𝐼 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝐼 ∈ ( 0 ... ( 𝐼 + 1 ) ) ) |
| 38 | peano2nn0 | ⊢ ( ( 𝐼 + 1 ) ∈ ℕ0 → ( ( 𝐼 + 1 ) + 1 ) ∈ ℕ0 ) | |
| 39 | 9 38 | syl | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐼 ∈ ℕ0 ∧ ( 𝐼 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐼 + 1 ) + 1 ) ∈ ℕ0 ) |
| 40 | 28 39 | eqeltrd | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐼 ∈ ℕ0 ∧ ( 𝐼 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝐼 + 2 ) ∈ ℕ0 ) |
| 41 | 10 | lep1d | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐼 ∈ ℕ0 ∧ ( 𝐼 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝐼 + 1 ) ≤ ( ( 𝐼 + 1 ) + 1 ) ) |
| 42 | 41 28 | breqtrrd | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐼 ∈ ℕ0 ∧ ( 𝐼 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝐼 + 1 ) ≤ ( 𝐼 + 2 ) ) |
| 43 | elfz2nn0 | ⊢ ( ( 𝐼 + 1 ) ∈ ( 0 ... ( 𝐼 + 2 ) ) ↔ ( ( 𝐼 + 1 ) ∈ ℕ0 ∧ ( 𝐼 + 2 ) ∈ ℕ0 ∧ ( 𝐼 + 1 ) ≤ ( 𝐼 + 2 ) ) ) | |
| 44 | 9 40 42 43 | syl3anbrc | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐼 ∈ ℕ0 ∧ ( 𝐼 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝐼 + 1 ) ∈ ( 0 ... ( 𝐼 + 2 ) ) ) |
| 45 | fzofzp1 | ⊢ ( ( 𝐼 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( 𝐼 + 1 ) + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | |
| 46 | 45 | 3ad2ant3 | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐼 ∈ ℕ0 ∧ ( 𝐼 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐼 + 1 ) + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
| 47 | 28 46 | eqeltrd | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐼 ∈ ℕ0 ∧ ( 𝐼 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝐼 + 2 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
| 48 | ccatswrd | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ ( 𝐼 ∈ ( 0 ... ( 𝐼 + 1 ) ) ∧ ( 𝐼 + 1 ) ∈ ( 0 ... ( 𝐼 + 2 ) ) ∧ ( 𝐼 + 2 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) → ( ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 1 ) 〉 ) ++ ( 𝑊 substr 〈 ( 𝐼 + 1 ) , ( 𝐼 + 2 ) 〉 ) ) = ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 2 ) 〉 ) ) | |
| 49 | 2 37 44 47 48 | syl13anc | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐼 ∈ ℕ0 ∧ ( 𝐼 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 1 ) 〉 ) ++ ( 𝑊 substr 〈 ( 𝐼 + 1 ) , ( 𝐼 + 2 ) 〉 ) ) = ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 2 ) 〉 ) ) |
| 50 | 35 49 | eqtr2d | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐼 ∈ ℕ0 ∧ ( 𝐼 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 2 ) 〉 ) = 〈“ ( 𝑊 ‘ 𝐼 ) ( 𝑊 ‘ ( 𝐼 + 1 ) ) ”〉 ) |