This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Symbols within the replacement region of a splice, expressed using the coordinates of the replacement region. (Contributed by Stefan O'Rear, 23-Aug-2015) (Proof shortened by AV, 15-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | spllen.s | ⊢ ( 𝜑 → 𝑆 ∈ Word 𝐴 ) | |
| spllen.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 0 ... 𝑇 ) ) | ||
| spllen.t | ⊢ ( 𝜑 → 𝑇 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) | ||
| spllen.r | ⊢ ( 𝜑 → 𝑅 ∈ Word 𝐴 ) | ||
| splfv2a.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝑅 ) ) ) | ||
| Assertion | splfv2a | ⊢ ( 𝜑 → ( ( 𝑆 splice 〈 𝐹 , 𝑇 , 𝑅 〉 ) ‘ ( 𝐹 + 𝑋 ) ) = ( 𝑅 ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spllen.s | ⊢ ( 𝜑 → 𝑆 ∈ Word 𝐴 ) | |
| 2 | spllen.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 0 ... 𝑇 ) ) | |
| 3 | spllen.t | ⊢ ( 𝜑 → 𝑇 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) | |
| 4 | spllen.r | ⊢ ( 𝜑 → 𝑅 ∈ Word 𝐴 ) | |
| 5 | splfv2a.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝑅 ) ) ) | |
| 6 | splval | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝐹 ∈ ( 0 ... 𝑇 ) ∧ 𝑇 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ∧ 𝑅 ∈ Word 𝐴 ) ) → ( 𝑆 splice 〈 𝐹 , 𝑇 , 𝑅 〉 ) = ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ++ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ) | |
| 7 | 1 2 3 4 6 | syl13anc | ⊢ ( 𝜑 → ( 𝑆 splice 〈 𝐹 , 𝑇 , 𝑅 〉 ) = ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ++ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ) |
| 8 | elfznn0 | ⊢ ( 𝐹 ∈ ( 0 ... 𝑇 ) → 𝐹 ∈ ℕ0 ) | |
| 9 | 2 8 | syl | ⊢ ( 𝜑 → 𝐹 ∈ ℕ0 ) |
| 10 | 9 | nn0cnd | ⊢ ( 𝜑 → 𝐹 ∈ ℂ ) |
| 11 | elfzonn0 | ⊢ ( 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝑅 ) ) → 𝑋 ∈ ℕ0 ) | |
| 12 | 5 11 | syl | ⊢ ( 𝜑 → 𝑋 ∈ ℕ0 ) |
| 13 | 12 | nn0cnd | ⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 14 | 10 13 | addcomd | ⊢ ( 𝜑 → ( 𝐹 + 𝑋 ) = ( 𝑋 + 𝐹 ) ) |
| 15 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 16 | 9 15 | eleqtrdi | ⊢ ( 𝜑 → 𝐹 ∈ ( ℤ≥ ‘ 0 ) ) |
| 17 | elfzuz3 | ⊢ ( 𝑇 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) → ( ♯ ‘ 𝑆 ) ∈ ( ℤ≥ ‘ 𝑇 ) ) | |
| 18 | 3 17 | syl | ⊢ ( 𝜑 → ( ♯ ‘ 𝑆 ) ∈ ( ℤ≥ ‘ 𝑇 ) ) |
| 19 | elfzuz3 | ⊢ ( 𝐹 ∈ ( 0 ... 𝑇 ) → 𝑇 ∈ ( ℤ≥ ‘ 𝐹 ) ) | |
| 20 | 2 19 | syl | ⊢ ( 𝜑 → 𝑇 ∈ ( ℤ≥ ‘ 𝐹 ) ) |
| 21 | uztrn | ⊢ ( ( ( ♯ ‘ 𝑆 ) ∈ ( ℤ≥ ‘ 𝑇 ) ∧ 𝑇 ∈ ( ℤ≥ ‘ 𝐹 ) ) → ( ♯ ‘ 𝑆 ) ∈ ( ℤ≥ ‘ 𝐹 ) ) | |
| 22 | 18 20 21 | syl2anc | ⊢ ( 𝜑 → ( ♯ ‘ 𝑆 ) ∈ ( ℤ≥ ‘ 𝐹 ) ) |
| 23 | elfzuzb | ⊢ ( 𝐹 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ↔ ( 𝐹 ∈ ( ℤ≥ ‘ 0 ) ∧ ( ♯ ‘ 𝑆 ) ∈ ( ℤ≥ ‘ 𝐹 ) ) ) | |
| 24 | 16 22 23 | sylanbrc | ⊢ ( 𝜑 → 𝐹 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) |
| 25 | pfxlen | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) = 𝐹 ) | |
| 26 | 1 24 25 | syl2anc | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) = 𝐹 ) |
| 27 | 26 | oveq2d | ⊢ ( 𝜑 → ( 𝑋 + ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) ) = ( 𝑋 + 𝐹 ) ) |
| 28 | 14 27 | eqtr4d | ⊢ ( 𝜑 → ( 𝐹 + 𝑋 ) = ( 𝑋 + ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) ) ) |
| 29 | 7 28 | fveq12d | ⊢ ( 𝜑 → ( ( 𝑆 splice 〈 𝐹 , 𝑇 , 𝑅 〉 ) ‘ ( 𝐹 + 𝑋 ) ) = ( ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ++ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ‘ ( 𝑋 + ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) ) ) ) |
| 30 | pfxcl | ⊢ ( 𝑆 ∈ Word 𝐴 → ( 𝑆 prefix 𝐹 ) ∈ Word 𝐴 ) | |
| 31 | 1 30 | syl | ⊢ ( 𝜑 → ( 𝑆 prefix 𝐹 ) ∈ Word 𝐴 ) |
| 32 | ccatcl | ⊢ ( ( ( 𝑆 prefix 𝐹 ) ∈ Word 𝐴 ∧ 𝑅 ∈ Word 𝐴 ) → ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ∈ Word 𝐴 ) | |
| 33 | 31 4 32 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ∈ Word 𝐴 ) |
| 34 | swrdcl | ⊢ ( 𝑆 ∈ Word 𝐴 → ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ∈ Word 𝐴 ) | |
| 35 | 1 34 | syl | ⊢ ( 𝜑 → ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ∈ Word 𝐴 ) |
| 36 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 37 | nn0addcl | ⊢ ( ( 0 ∈ ℕ0 ∧ 𝐹 ∈ ℕ0 ) → ( 0 + 𝐹 ) ∈ ℕ0 ) | |
| 38 | 36 9 37 | sylancr | ⊢ ( 𝜑 → ( 0 + 𝐹 ) ∈ ℕ0 ) |
| 39 | fzoss1 | ⊢ ( ( 0 + 𝐹 ) ∈ ( ℤ≥ ‘ 0 ) → ( ( 0 + 𝐹 ) ..^ ( ( ♯ ‘ 𝑅 ) + 𝐹 ) ) ⊆ ( 0 ..^ ( ( ♯ ‘ 𝑅 ) + 𝐹 ) ) ) | |
| 40 | 39 15 | eleq2s | ⊢ ( ( 0 + 𝐹 ) ∈ ℕ0 → ( ( 0 + 𝐹 ) ..^ ( ( ♯ ‘ 𝑅 ) + 𝐹 ) ) ⊆ ( 0 ..^ ( ( ♯ ‘ 𝑅 ) + 𝐹 ) ) ) |
| 41 | 38 40 | syl | ⊢ ( 𝜑 → ( ( 0 + 𝐹 ) ..^ ( ( ♯ ‘ 𝑅 ) + 𝐹 ) ) ⊆ ( 0 ..^ ( ( ♯ ‘ 𝑅 ) + 𝐹 ) ) ) |
| 42 | ccatlen | ⊢ ( ( ( 𝑆 prefix 𝐹 ) ∈ Word 𝐴 ∧ 𝑅 ∈ Word 𝐴 ) → ( ♯ ‘ ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ) = ( ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) + ( ♯ ‘ 𝑅 ) ) ) | |
| 43 | 31 4 42 | syl2anc | ⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ) = ( ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) + ( ♯ ‘ 𝑅 ) ) ) |
| 44 | 26 | oveq1d | ⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) + ( ♯ ‘ 𝑅 ) ) = ( 𝐹 + ( ♯ ‘ 𝑅 ) ) ) |
| 45 | lencl | ⊢ ( 𝑅 ∈ Word 𝐴 → ( ♯ ‘ 𝑅 ) ∈ ℕ0 ) | |
| 46 | 4 45 | syl | ⊢ ( 𝜑 → ( ♯ ‘ 𝑅 ) ∈ ℕ0 ) |
| 47 | 46 | nn0cnd | ⊢ ( 𝜑 → ( ♯ ‘ 𝑅 ) ∈ ℂ ) |
| 48 | 10 47 | addcomd | ⊢ ( 𝜑 → ( 𝐹 + ( ♯ ‘ 𝑅 ) ) = ( ( ♯ ‘ 𝑅 ) + 𝐹 ) ) |
| 49 | 43 44 48 | 3eqtrd | ⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ) = ( ( ♯ ‘ 𝑅 ) + 𝐹 ) ) |
| 50 | 49 | oveq2d | ⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ) ) = ( 0 ..^ ( ( ♯ ‘ 𝑅 ) + 𝐹 ) ) ) |
| 51 | 41 50 | sseqtrrd | ⊢ ( 𝜑 → ( ( 0 + 𝐹 ) ..^ ( ( ♯ ‘ 𝑅 ) + 𝐹 ) ) ⊆ ( 0 ..^ ( ♯ ‘ ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ) ) ) |
| 52 | 9 | nn0zd | ⊢ ( 𝜑 → 𝐹 ∈ ℤ ) |
| 53 | fzoaddel | ⊢ ( ( 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝑅 ) ) ∧ 𝐹 ∈ ℤ ) → ( 𝑋 + 𝐹 ) ∈ ( ( 0 + 𝐹 ) ..^ ( ( ♯ ‘ 𝑅 ) + 𝐹 ) ) ) | |
| 54 | 5 52 53 | syl2anc | ⊢ ( 𝜑 → ( 𝑋 + 𝐹 ) ∈ ( ( 0 + 𝐹 ) ..^ ( ( ♯ ‘ 𝑅 ) + 𝐹 ) ) ) |
| 55 | 51 54 | sseldd | ⊢ ( 𝜑 → ( 𝑋 + 𝐹 ) ∈ ( 0 ..^ ( ♯ ‘ ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ) ) ) |
| 56 | 27 55 | eqeltrd | ⊢ ( 𝜑 → ( 𝑋 + ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) ) ∈ ( 0 ..^ ( ♯ ‘ ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ) ) ) |
| 57 | ccatval1 | ⊢ ( ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ∈ Word 𝐴 ∧ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ∈ Word 𝐴 ∧ ( 𝑋 + ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) ) ∈ ( 0 ..^ ( ♯ ‘ ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ) ) ) → ( ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ++ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ‘ ( 𝑋 + ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) ) ) = ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ‘ ( 𝑋 + ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) ) ) ) | |
| 58 | 33 35 56 57 | syl3anc | ⊢ ( 𝜑 → ( ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ++ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ‘ ( 𝑋 + ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) ) ) = ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ‘ ( 𝑋 + ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) ) ) ) |
| 59 | ccatval3 | ⊢ ( ( ( 𝑆 prefix 𝐹 ) ∈ Word 𝐴 ∧ 𝑅 ∈ Word 𝐴 ∧ 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝑅 ) ) ) → ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ‘ ( 𝑋 + ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) ) ) = ( 𝑅 ‘ 𝑋 ) ) | |
| 60 | 31 4 5 59 | syl3anc | ⊢ ( 𝜑 → ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ‘ ( 𝑋 + ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) ) ) = ( 𝑅 ‘ 𝑋 ) ) |
| 61 | 29 58 60 | 3eqtrd | ⊢ ( 𝜑 → ( ( 𝑆 splice 〈 𝐹 , 𝑇 , 𝑅 〉 ) ‘ ( 𝐹 + 𝑋 ) ) = ( 𝑅 ‘ 𝑋 ) ) |