This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The primary purpose of the splice construction is to enable local rewrites. Thus, in any monoidal valuation, if a splice does not cause a local change it does not cause a global change. (Contributed by Stefan O'Rear, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumspl.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| gsumspl.m | ⊢ ( 𝜑 → 𝑀 ∈ Mnd ) | ||
| gsumspl.s | ⊢ ( 𝜑 → 𝑆 ∈ Word 𝐵 ) | ||
| gsumspl.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 0 ... 𝑇 ) ) | ||
| gsumspl.t | ⊢ ( 𝜑 → 𝑇 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) | ||
| gsumspl.x | ⊢ ( 𝜑 → 𝑋 ∈ Word 𝐵 ) | ||
| gsumspl.y | ⊢ ( 𝜑 → 𝑌 ∈ Word 𝐵 ) | ||
| gsumspl.eq | ⊢ ( 𝜑 → ( 𝑀 Σg 𝑋 ) = ( 𝑀 Σg 𝑌 ) ) | ||
| Assertion | gsumspl | ⊢ ( 𝜑 → ( 𝑀 Σg ( 𝑆 splice 〈 𝐹 , 𝑇 , 𝑋 〉 ) ) = ( 𝑀 Σg ( 𝑆 splice 〈 𝐹 , 𝑇 , 𝑌 〉 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumspl.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 2 | gsumspl.m | ⊢ ( 𝜑 → 𝑀 ∈ Mnd ) | |
| 3 | gsumspl.s | ⊢ ( 𝜑 → 𝑆 ∈ Word 𝐵 ) | |
| 4 | gsumspl.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 0 ... 𝑇 ) ) | |
| 5 | gsumspl.t | ⊢ ( 𝜑 → 𝑇 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) | |
| 6 | gsumspl.x | ⊢ ( 𝜑 → 𝑋 ∈ Word 𝐵 ) | |
| 7 | gsumspl.y | ⊢ ( 𝜑 → 𝑌 ∈ Word 𝐵 ) | |
| 8 | gsumspl.eq | ⊢ ( 𝜑 → ( 𝑀 Σg 𝑋 ) = ( 𝑀 Σg 𝑌 ) ) | |
| 9 | 8 | oveq2d | ⊢ ( 𝜑 → ( ( 𝑀 Σg ( 𝑆 prefix 𝐹 ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg 𝑋 ) ) = ( ( 𝑀 Σg ( 𝑆 prefix 𝐹 ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg 𝑌 ) ) ) |
| 10 | 9 | oveq1d | ⊢ ( 𝜑 → ( ( ( 𝑀 Σg ( 𝑆 prefix 𝐹 ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg 𝑋 ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ) = ( ( ( 𝑀 Σg ( 𝑆 prefix 𝐹 ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg 𝑌 ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ) ) |
| 11 | splval | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ ( 𝐹 ∈ ( 0 ... 𝑇 ) ∧ 𝑇 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ∧ 𝑋 ∈ Word 𝐵 ) ) → ( 𝑆 splice 〈 𝐹 , 𝑇 , 𝑋 〉 ) = ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑋 ) ++ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ) | |
| 12 | 3 4 5 6 11 | syl13anc | ⊢ ( 𝜑 → ( 𝑆 splice 〈 𝐹 , 𝑇 , 𝑋 〉 ) = ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑋 ) ++ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ) |
| 13 | 12 | oveq2d | ⊢ ( 𝜑 → ( 𝑀 Σg ( 𝑆 splice 〈 𝐹 , 𝑇 , 𝑋 〉 ) ) = ( 𝑀 Σg ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑋 ) ++ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ) ) |
| 14 | pfxcl | ⊢ ( 𝑆 ∈ Word 𝐵 → ( 𝑆 prefix 𝐹 ) ∈ Word 𝐵 ) | |
| 15 | 3 14 | syl | ⊢ ( 𝜑 → ( 𝑆 prefix 𝐹 ) ∈ Word 𝐵 ) |
| 16 | ccatcl | ⊢ ( ( ( 𝑆 prefix 𝐹 ) ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) → ( ( 𝑆 prefix 𝐹 ) ++ 𝑋 ) ∈ Word 𝐵 ) | |
| 17 | 15 6 16 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑆 prefix 𝐹 ) ++ 𝑋 ) ∈ Word 𝐵 ) |
| 18 | swrdcl | ⊢ ( 𝑆 ∈ Word 𝐵 → ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ∈ Word 𝐵 ) | |
| 19 | 3 18 | syl | ⊢ ( 𝜑 → ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ∈ Word 𝐵 ) |
| 20 | eqid | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) | |
| 21 | 1 20 | gsumccat | ⊢ ( ( 𝑀 ∈ Mnd ∧ ( ( 𝑆 prefix 𝐹 ) ++ 𝑋 ) ∈ Word 𝐵 ∧ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ∈ Word 𝐵 ) → ( 𝑀 Σg ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑋 ) ++ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ) = ( ( 𝑀 Σg ( ( 𝑆 prefix 𝐹 ) ++ 𝑋 ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ) ) |
| 22 | 2 17 19 21 | syl3anc | ⊢ ( 𝜑 → ( 𝑀 Σg ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑋 ) ++ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ) = ( ( 𝑀 Σg ( ( 𝑆 prefix 𝐹 ) ++ 𝑋 ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ) ) |
| 23 | 1 20 | gsumccat | ⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑆 prefix 𝐹 ) ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵 ) → ( 𝑀 Σg ( ( 𝑆 prefix 𝐹 ) ++ 𝑋 ) ) = ( ( 𝑀 Σg ( 𝑆 prefix 𝐹 ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg 𝑋 ) ) ) |
| 24 | 2 15 6 23 | syl3anc | ⊢ ( 𝜑 → ( 𝑀 Σg ( ( 𝑆 prefix 𝐹 ) ++ 𝑋 ) ) = ( ( 𝑀 Σg ( 𝑆 prefix 𝐹 ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg 𝑋 ) ) ) |
| 25 | 24 | oveq1d | ⊢ ( 𝜑 → ( ( 𝑀 Σg ( ( 𝑆 prefix 𝐹 ) ++ 𝑋 ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ) = ( ( ( 𝑀 Σg ( 𝑆 prefix 𝐹 ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg 𝑋 ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ) ) |
| 26 | 13 22 25 | 3eqtrd | ⊢ ( 𝜑 → ( 𝑀 Σg ( 𝑆 splice 〈 𝐹 , 𝑇 , 𝑋 〉 ) ) = ( ( ( 𝑀 Σg ( 𝑆 prefix 𝐹 ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg 𝑋 ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ) ) |
| 27 | splval | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ ( 𝐹 ∈ ( 0 ... 𝑇 ) ∧ 𝑇 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ∧ 𝑌 ∈ Word 𝐵 ) ) → ( 𝑆 splice 〈 𝐹 , 𝑇 , 𝑌 〉 ) = ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑌 ) ++ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ) | |
| 28 | 3 4 5 7 27 | syl13anc | ⊢ ( 𝜑 → ( 𝑆 splice 〈 𝐹 , 𝑇 , 𝑌 〉 ) = ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑌 ) ++ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ) |
| 29 | 28 | oveq2d | ⊢ ( 𝜑 → ( 𝑀 Σg ( 𝑆 splice 〈 𝐹 , 𝑇 , 𝑌 〉 ) ) = ( 𝑀 Σg ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑌 ) ++ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ) ) |
| 30 | ccatcl | ⊢ ( ( ( 𝑆 prefix 𝐹 ) ∈ Word 𝐵 ∧ 𝑌 ∈ Word 𝐵 ) → ( ( 𝑆 prefix 𝐹 ) ++ 𝑌 ) ∈ Word 𝐵 ) | |
| 31 | 15 7 30 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑆 prefix 𝐹 ) ++ 𝑌 ) ∈ Word 𝐵 ) |
| 32 | 1 20 | gsumccat | ⊢ ( ( 𝑀 ∈ Mnd ∧ ( ( 𝑆 prefix 𝐹 ) ++ 𝑌 ) ∈ Word 𝐵 ∧ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ∈ Word 𝐵 ) → ( 𝑀 Σg ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑌 ) ++ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ) = ( ( 𝑀 Σg ( ( 𝑆 prefix 𝐹 ) ++ 𝑌 ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ) ) |
| 33 | 2 31 19 32 | syl3anc | ⊢ ( 𝜑 → ( 𝑀 Σg ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑌 ) ++ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ) = ( ( 𝑀 Σg ( ( 𝑆 prefix 𝐹 ) ++ 𝑌 ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ) ) |
| 34 | 1 20 | gsumccat | ⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑆 prefix 𝐹 ) ∈ Word 𝐵 ∧ 𝑌 ∈ Word 𝐵 ) → ( 𝑀 Σg ( ( 𝑆 prefix 𝐹 ) ++ 𝑌 ) ) = ( ( 𝑀 Σg ( 𝑆 prefix 𝐹 ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg 𝑌 ) ) ) |
| 35 | 2 15 7 34 | syl3anc | ⊢ ( 𝜑 → ( 𝑀 Σg ( ( 𝑆 prefix 𝐹 ) ++ 𝑌 ) ) = ( ( 𝑀 Σg ( 𝑆 prefix 𝐹 ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg 𝑌 ) ) ) |
| 36 | 35 | oveq1d | ⊢ ( 𝜑 → ( ( 𝑀 Σg ( ( 𝑆 prefix 𝐹 ) ++ 𝑌 ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ) = ( ( ( 𝑀 Σg ( 𝑆 prefix 𝐹 ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg 𝑌 ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ) ) |
| 37 | 29 33 36 | 3eqtrd | ⊢ ( 𝜑 → ( 𝑀 Σg ( 𝑆 splice 〈 𝐹 , 𝑇 , 𝑌 〉 ) ) = ( ( ( 𝑀 Σg ( 𝑆 prefix 𝐹 ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg 𝑌 ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ) ) |
| 38 | 10 26 37 | 3eqtr4d | ⊢ ( 𝜑 → ( 𝑀 Σg ( 𝑆 splice 〈 𝐹 , 𝑇 , 𝑋 〉 ) ) = ( 𝑀 Σg ( 𝑆 splice 〈 𝐹 , 𝑇 , 𝑌 〉 ) ) ) |