This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A word is a zero-based sequence with a recoverable upper limit. (Contributed by Stefan O'Rear, 15-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wrdf | ⊢ ( 𝑊 ∈ Word 𝑆 → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iswrd | ⊢ ( 𝑊 ∈ Word 𝑆 ↔ ∃ 𝑙 ∈ ℕ0 𝑊 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 ) | |
| 2 | simpr | ⊢ ( ( 𝑙 ∈ ℕ0 ∧ 𝑊 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 ) → 𝑊 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 ) | |
| 3 | fnfzo0hash | ⊢ ( ( 𝑙 ∈ ℕ0 ∧ 𝑊 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 ) → ( ♯ ‘ 𝑊 ) = 𝑙 ) | |
| 4 | 3 | oveq2d | ⊢ ( ( 𝑙 ∈ ℕ0 ∧ 𝑊 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 ) → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ( 0 ..^ 𝑙 ) ) |
| 5 | 4 | feq2d | ⊢ ( ( 𝑙 ∈ ℕ0 ∧ 𝑊 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 ) → ( 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑆 ↔ 𝑊 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 ) ) |
| 6 | 2 5 | mpbird | ⊢ ( ( 𝑙 ∈ ℕ0 ∧ 𝑊 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 ) → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑆 ) |
| 7 | 6 | rexlimiva | ⊢ ( ∃ 𝑙 ∈ ℕ0 𝑊 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑆 ) |
| 8 | 1 7 | sylbi | ⊢ ( 𝑊 ∈ Word 𝑆 → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑆 ) |