This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the substring replacement operator. (Contributed by Stefan O'Rear, 26-Aug-2015) (Proof shortened by AV, 15-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | splcl | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑅 ∈ Word 𝐴 ) → ( 𝑆 splice 〈 𝐹 , 𝑇 , 𝑅 〉 ) ∈ Word 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | ⊢ ( 𝑆 ∈ Word 𝐴 → 𝑆 ∈ V ) | |
| 2 | otex | ⊢ 〈 𝐹 , 𝑇 , 𝑅 〉 ∈ V | |
| 3 | id | ⊢ ( 𝑠 = 𝑆 → 𝑠 = 𝑆 ) | |
| 4 | 2fveq3 | ⊢ ( 𝑏 = 〈 𝐹 , 𝑇 , 𝑅 〉 → ( 1st ‘ ( 1st ‘ 𝑏 ) ) = ( 1st ‘ ( 1st ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) ) | |
| 5 | 3 4 | oveqan12d | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑏 = 〈 𝐹 , 𝑇 , 𝑅 〉 ) → ( 𝑠 prefix ( 1st ‘ ( 1st ‘ 𝑏 ) ) ) = ( 𝑆 prefix ( 1st ‘ ( 1st ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) ) ) |
| 6 | simpr | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑏 = 〈 𝐹 , 𝑇 , 𝑅 〉 ) → 𝑏 = 〈 𝐹 , 𝑇 , 𝑅 〉 ) | |
| 7 | 6 | fveq2d | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑏 = 〈 𝐹 , 𝑇 , 𝑅 〉 ) → ( 2nd ‘ 𝑏 ) = ( 2nd ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) |
| 8 | 5 7 | oveq12d | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑏 = 〈 𝐹 , 𝑇 , 𝑅 〉 ) → ( ( 𝑠 prefix ( 1st ‘ ( 1st ‘ 𝑏 ) ) ) ++ ( 2nd ‘ 𝑏 ) ) = ( ( 𝑆 prefix ( 1st ‘ ( 1st ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) ) ++ ( 2nd ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) ) |
| 9 | simpl | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑏 = 〈 𝐹 , 𝑇 , 𝑅 〉 ) → 𝑠 = 𝑆 ) | |
| 10 | 6 | fveq2d | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑏 = 〈 𝐹 , 𝑇 , 𝑅 〉 ) → ( 1st ‘ 𝑏 ) = ( 1st ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) |
| 11 | 10 | fveq2d | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑏 = 〈 𝐹 , 𝑇 , 𝑅 〉 ) → ( 2nd ‘ ( 1st ‘ 𝑏 ) ) = ( 2nd ‘ ( 1st ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) ) |
| 12 | 9 | fveq2d | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑏 = 〈 𝐹 , 𝑇 , 𝑅 〉 ) → ( ♯ ‘ 𝑠 ) = ( ♯ ‘ 𝑆 ) ) |
| 13 | 11 12 | opeq12d | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑏 = 〈 𝐹 , 𝑇 , 𝑅 〉 ) → 〈 ( 2nd ‘ ( 1st ‘ 𝑏 ) ) , ( ♯ ‘ 𝑠 ) 〉 = 〈 ( 2nd ‘ ( 1st ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) , ( ♯ ‘ 𝑆 ) 〉 ) |
| 14 | 9 13 | oveq12d | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑏 = 〈 𝐹 , 𝑇 , 𝑅 〉 ) → ( 𝑠 substr 〈 ( 2nd ‘ ( 1st ‘ 𝑏 ) ) , ( ♯ ‘ 𝑠 ) 〉 ) = ( 𝑆 substr 〈 ( 2nd ‘ ( 1st ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) , ( ♯ ‘ 𝑆 ) 〉 ) ) |
| 15 | 8 14 | oveq12d | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑏 = 〈 𝐹 , 𝑇 , 𝑅 〉 ) → ( ( ( 𝑠 prefix ( 1st ‘ ( 1st ‘ 𝑏 ) ) ) ++ ( 2nd ‘ 𝑏 ) ) ++ ( 𝑠 substr 〈 ( 2nd ‘ ( 1st ‘ 𝑏 ) ) , ( ♯ ‘ 𝑠 ) 〉 ) ) = ( ( ( 𝑆 prefix ( 1st ‘ ( 1st ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) ) ++ ( 2nd ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) ++ ( 𝑆 substr 〈 ( 2nd ‘ ( 1st ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) , ( ♯ ‘ 𝑆 ) 〉 ) ) ) |
| 16 | df-splice | ⊢ splice = ( 𝑠 ∈ V , 𝑏 ∈ V ↦ ( ( ( 𝑠 prefix ( 1st ‘ ( 1st ‘ 𝑏 ) ) ) ++ ( 2nd ‘ 𝑏 ) ) ++ ( 𝑠 substr 〈 ( 2nd ‘ ( 1st ‘ 𝑏 ) ) , ( ♯ ‘ 𝑠 ) 〉 ) ) ) | |
| 17 | ovex | ⊢ ( ( ( 𝑆 prefix ( 1st ‘ ( 1st ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) ) ++ ( 2nd ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) ++ ( 𝑆 substr 〈 ( 2nd ‘ ( 1st ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) , ( ♯ ‘ 𝑆 ) 〉 ) ) ∈ V | |
| 18 | 15 16 17 | ovmpoa | ⊢ ( ( 𝑆 ∈ V ∧ 〈 𝐹 , 𝑇 , 𝑅 〉 ∈ V ) → ( 𝑆 splice 〈 𝐹 , 𝑇 , 𝑅 〉 ) = ( ( ( 𝑆 prefix ( 1st ‘ ( 1st ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) ) ++ ( 2nd ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) ++ ( 𝑆 substr 〈 ( 2nd ‘ ( 1st ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) , ( ♯ ‘ 𝑆 ) 〉 ) ) ) |
| 19 | 1 2 18 | sylancl | ⊢ ( 𝑆 ∈ Word 𝐴 → ( 𝑆 splice 〈 𝐹 , 𝑇 , 𝑅 〉 ) = ( ( ( 𝑆 prefix ( 1st ‘ ( 1st ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) ) ++ ( 2nd ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) ++ ( 𝑆 substr 〈 ( 2nd ‘ ( 1st ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) , ( ♯ ‘ 𝑆 ) 〉 ) ) ) |
| 20 | 19 | adantr | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑅 ∈ Word 𝐴 ) → ( 𝑆 splice 〈 𝐹 , 𝑇 , 𝑅 〉 ) = ( ( ( 𝑆 prefix ( 1st ‘ ( 1st ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) ) ++ ( 2nd ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) ++ ( 𝑆 substr 〈 ( 2nd ‘ ( 1st ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) , ( ♯ ‘ 𝑆 ) 〉 ) ) ) |
| 21 | pfxcl | ⊢ ( 𝑆 ∈ Word 𝐴 → ( 𝑆 prefix ( 1st ‘ ( 1st ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) ) ∈ Word 𝐴 ) | |
| 22 | 21 | adantr | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑅 ∈ Word 𝐴 ) → ( 𝑆 prefix ( 1st ‘ ( 1st ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) ) ∈ Word 𝐴 ) |
| 23 | ot3rdg | ⊢ ( 𝑅 ∈ Word 𝐴 → ( 2nd ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) = 𝑅 ) | |
| 24 | 23 | adantl | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑅 ∈ Word 𝐴 ) → ( 2nd ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) = 𝑅 ) |
| 25 | simpr | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑅 ∈ Word 𝐴 ) → 𝑅 ∈ Word 𝐴 ) | |
| 26 | 24 25 | eqeltrd | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑅 ∈ Word 𝐴 ) → ( 2nd ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) ∈ Word 𝐴 ) |
| 27 | ccatcl | ⊢ ( ( ( 𝑆 prefix ( 1st ‘ ( 1st ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) ) ∈ Word 𝐴 ∧ ( 2nd ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) ∈ Word 𝐴 ) → ( ( 𝑆 prefix ( 1st ‘ ( 1st ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) ) ++ ( 2nd ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) ∈ Word 𝐴 ) | |
| 28 | 22 26 27 | syl2anc | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑅 ∈ Word 𝐴 ) → ( ( 𝑆 prefix ( 1st ‘ ( 1st ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) ) ++ ( 2nd ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) ∈ Word 𝐴 ) |
| 29 | swrdcl | ⊢ ( 𝑆 ∈ Word 𝐴 → ( 𝑆 substr 〈 ( 2nd ‘ ( 1st ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) , ( ♯ ‘ 𝑆 ) 〉 ) ∈ Word 𝐴 ) | |
| 30 | 29 | adantr | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑅 ∈ Word 𝐴 ) → ( 𝑆 substr 〈 ( 2nd ‘ ( 1st ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) , ( ♯ ‘ 𝑆 ) 〉 ) ∈ Word 𝐴 ) |
| 31 | ccatcl | ⊢ ( ( ( ( 𝑆 prefix ( 1st ‘ ( 1st ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) ) ++ ( 2nd ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) ∈ Word 𝐴 ∧ ( 𝑆 substr 〈 ( 2nd ‘ ( 1st ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) , ( ♯ ‘ 𝑆 ) 〉 ) ∈ Word 𝐴 ) → ( ( ( 𝑆 prefix ( 1st ‘ ( 1st ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) ) ++ ( 2nd ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) ++ ( 𝑆 substr 〈 ( 2nd ‘ ( 1st ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) , ( ♯ ‘ 𝑆 ) 〉 ) ) ∈ Word 𝐴 ) | |
| 32 | 28 30 31 | syl2anc | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑅 ∈ Word 𝐴 ) → ( ( ( 𝑆 prefix ( 1st ‘ ( 1st ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) ) ++ ( 2nd ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) ++ ( 𝑆 substr 〈 ( 2nd ‘ ( 1st ‘ 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) , ( ♯ ‘ 𝑆 ) 〉 ) ) ∈ Word 𝐴 ) |
| 33 | 20 32 | eqeltrd | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑅 ∈ Word 𝐴 ) → ( 𝑆 splice 〈 𝐹 , 𝑇 , 𝑅 〉 ) ∈ Word 𝐴 ) |