This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Symbols to the left of a splice are unaffected. (Contributed by Stefan O'Rear, 23-Aug-2015) (Proof shortened by AV, 15-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | spllen.s | ⊢ ( 𝜑 → 𝑆 ∈ Word 𝐴 ) | |
| spllen.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 0 ... 𝑇 ) ) | ||
| spllen.t | ⊢ ( 𝜑 → 𝑇 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) | ||
| spllen.r | ⊢ ( 𝜑 → 𝑅 ∈ Word 𝐴 ) | ||
| splfv1.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 0 ..^ 𝐹 ) ) | ||
| Assertion | splfv1 | ⊢ ( 𝜑 → ( ( 𝑆 splice 〈 𝐹 , 𝑇 , 𝑅 〉 ) ‘ 𝑋 ) = ( 𝑆 ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spllen.s | ⊢ ( 𝜑 → 𝑆 ∈ Word 𝐴 ) | |
| 2 | spllen.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 0 ... 𝑇 ) ) | |
| 3 | spllen.t | ⊢ ( 𝜑 → 𝑇 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) | |
| 4 | spllen.r | ⊢ ( 𝜑 → 𝑅 ∈ Word 𝐴 ) | |
| 5 | splfv1.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 0 ..^ 𝐹 ) ) | |
| 6 | splval | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝐹 ∈ ( 0 ... 𝑇 ) ∧ 𝑇 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ∧ 𝑅 ∈ Word 𝐴 ) ) → ( 𝑆 splice 〈 𝐹 , 𝑇 , 𝑅 〉 ) = ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ++ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ) | |
| 7 | 1 2 3 4 6 | syl13anc | ⊢ ( 𝜑 → ( 𝑆 splice 〈 𝐹 , 𝑇 , 𝑅 〉 ) = ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ++ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ) |
| 8 | 7 | fveq1d | ⊢ ( 𝜑 → ( ( 𝑆 splice 〈 𝐹 , 𝑇 , 𝑅 〉 ) ‘ 𝑋 ) = ( ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ++ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ‘ 𝑋 ) ) |
| 9 | pfxcl | ⊢ ( 𝑆 ∈ Word 𝐴 → ( 𝑆 prefix 𝐹 ) ∈ Word 𝐴 ) | |
| 10 | 1 9 | syl | ⊢ ( 𝜑 → ( 𝑆 prefix 𝐹 ) ∈ Word 𝐴 ) |
| 11 | ccatcl | ⊢ ( ( ( 𝑆 prefix 𝐹 ) ∈ Word 𝐴 ∧ 𝑅 ∈ Word 𝐴 ) → ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ∈ Word 𝐴 ) | |
| 12 | 10 4 11 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ∈ Word 𝐴 ) |
| 13 | swrdcl | ⊢ ( 𝑆 ∈ Word 𝐴 → ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ∈ Word 𝐴 ) | |
| 14 | 1 13 | syl | ⊢ ( 𝜑 → ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ∈ Word 𝐴 ) |
| 15 | 2 | elfzelzd | ⊢ ( 𝜑 → 𝐹 ∈ ℤ ) |
| 16 | 15 | uzidd | ⊢ ( 𝜑 → 𝐹 ∈ ( ℤ≥ ‘ 𝐹 ) ) |
| 17 | lencl | ⊢ ( 𝑅 ∈ Word 𝐴 → ( ♯ ‘ 𝑅 ) ∈ ℕ0 ) | |
| 18 | 4 17 | syl | ⊢ ( 𝜑 → ( ♯ ‘ 𝑅 ) ∈ ℕ0 ) |
| 19 | uzaddcl | ⊢ ( ( 𝐹 ∈ ( ℤ≥ ‘ 𝐹 ) ∧ ( ♯ ‘ 𝑅 ) ∈ ℕ0 ) → ( 𝐹 + ( ♯ ‘ 𝑅 ) ) ∈ ( ℤ≥ ‘ 𝐹 ) ) | |
| 20 | 16 18 19 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 + ( ♯ ‘ 𝑅 ) ) ∈ ( ℤ≥ ‘ 𝐹 ) ) |
| 21 | fzoss2 | ⊢ ( ( 𝐹 + ( ♯ ‘ 𝑅 ) ) ∈ ( ℤ≥ ‘ 𝐹 ) → ( 0 ..^ 𝐹 ) ⊆ ( 0 ..^ ( 𝐹 + ( ♯ ‘ 𝑅 ) ) ) ) | |
| 22 | 20 21 | syl | ⊢ ( 𝜑 → ( 0 ..^ 𝐹 ) ⊆ ( 0 ..^ ( 𝐹 + ( ♯ ‘ 𝑅 ) ) ) ) |
| 23 | 22 5 | sseldd | ⊢ ( 𝜑 → 𝑋 ∈ ( 0 ..^ ( 𝐹 + ( ♯ ‘ 𝑅 ) ) ) ) |
| 24 | ccatlen | ⊢ ( ( ( 𝑆 prefix 𝐹 ) ∈ Word 𝐴 ∧ 𝑅 ∈ Word 𝐴 ) → ( ♯ ‘ ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ) = ( ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) + ( ♯ ‘ 𝑅 ) ) ) | |
| 25 | 10 4 24 | syl2anc | ⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ) = ( ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) + ( ♯ ‘ 𝑅 ) ) ) |
| 26 | fzass4 | ⊢ ( ( 𝐹 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ∧ 𝑇 ∈ ( 𝐹 ... ( ♯ ‘ 𝑆 ) ) ) ↔ ( 𝐹 ∈ ( 0 ... 𝑇 ) ∧ 𝑇 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) | |
| 27 | 26 | biimpri | ⊢ ( ( 𝐹 ∈ ( 0 ... 𝑇 ) ∧ 𝑇 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( 𝐹 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ∧ 𝑇 ∈ ( 𝐹 ... ( ♯ ‘ 𝑆 ) ) ) ) |
| 28 | 27 | simpld | ⊢ ( ( 𝐹 ∈ ( 0 ... 𝑇 ) ∧ 𝑇 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → 𝐹 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) |
| 29 | 2 3 28 | syl2anc | ⊢ ( 𝜑 → 𝐹 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) |
| 30 | pfxlen | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) = 𝐹 ) | |
| 31 | 1 29 30 | syl2anc | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) = 𝐹 ) |
| 32 | 31 | oveq1d | ⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) + ( ♯ ‘ 𝑅 ) ) = ( 𝐹 + ( ♯ ‘ 𝑅 ) ) ) |
| 33 | 25 32 | eqtrd | ⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ) = ( 𝐹 + ( ♯ ‘ 𝑅 ) ) ) |
| 34 | 33 | oveq2d | ⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ) ) = ( 0 ..^ ( 𝐹 + ( ♯ ‘ 𝑅 ) ) ) ) |
| 35 | 23 34 | eleqtrrd | ⊢ ( 𝜑 → 𝑋 ∈ ( 0 ..^ ( ♯ ‘ ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ) ) ) |
| 36 | ccatval1 | ⊢ ( ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ∈ Word 𝐴 ∧ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ∈ Word 𝐴 ∧ 𝑋 ∈ ( 0 ..^ ( ♯ ‘ ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ) ) ) → ( ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ++ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ‘ 𝑋 ) = ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ‘ 𝑋 ) ) | |
| 37 | 12 14 35 36 | syl3anc | ⊢ ( 𝜑 → ( ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ++ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ‘ 𝑋 ) = ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ‘ 𝑋 ) ) |
| 38 | 31 | oveq2d | ⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) ) = ( 0 ..^ 𝐹 ) ) |
| 39 | 5 38 | eleqtrrd | ⊢ ( 𝜑 → 𝑋 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) ) ) |
| 40 | ccatval1 | ⊢ ( ( ( 𝑆 prefix 𝐹 ) ∈ Word 𝐴 ∧ 𝑅 ∈ Word 𝐴 ∧ 𝑋 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) ) ) → ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ‘ 𝑋 ) = ( ( 𝑆 prefix 𝐹 ) ‘ 𝑋 ) ) | |
| 41 | 10 4 39 40 | syl3anc | ⊢ ( 𝜑 → ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ‘ 𝑋 ) = ( ( 𝑆 prefix 𝐹 ) ‘ 𝑋 ) ) |
| 42 | pfxfv | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ∧ 𝑋 ∈ ( 0 ..^ 𝐹 ) ) → ( ( 𝑆 prefix 𝐹 ) ‘ 𝑋 ) = ( 𝑆 ‘ 𝑋 ) ) | |
| 43 | 1 29 5 42 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑆 prefix 𝐹 ) ‘ 𝑋 ) = ( 𝑆 ‘ 𝑋 ) ) |
| 44 | 41 43 | eqtrd | ⊢ ( 𝜑 → ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ‘ 𝑋 ) = ( 𝑆 ‘ 𝑋 ) ) |
| 45 | 8 37 44 | 3eqtrd | ⊢ ( 𝜑 → ( ( 𝑆 splice 〈 𝐹 , 𝑇 , 𝑅 〉 ) ‘ 𝑋 ) = ( 𝑆 ‘ 𝑋 ) ) |