This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group identity element of the symmetric group on a set A . (Contributed by Paul Chapman, 25-Jul-2008) (Revised by Mario Carneiro, 13-Jan-2015) (Proof shortened by AV, 1-Apr-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | symggrp.1 | ⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) | |
| Assertion | symgid | ⊢ ( 𝐴 ∈ 𝑉 → ( I ↾ 𝐴 ) = ( 0g ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symggrp.1 | ⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) | |
| 2 | eqid | ⊢ ( EndoFMnd ‘ 𝐴 ) = ( EndoFMnd ‘ 𝐴 ) | |
| 3 | 2 | efmndid | ⊢ ( 𝐴 ∈ 𝑉 → ( I ↾ 𝐴 ) = ( 0g ‘ ( EndoFMnd ‘ 𝐴 ) ) ) |
| 4 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 5 | 2 1 4 | symgsubmefmnd | ⊢ ( 𝐴 ∈ 𝑉 → ( Base ‘ 𝐺 ) ∈ ( SubMnd ‘ ( EndoFMnd ‘ 𝐴 ) ) ) |
| 6 | 1 4 2 | symgressbas | ⊢ 𝐺 = ( ( EndoFMnd ‘ 𝐴 ) ↾s ( Base ‘ 𝐺 ) ) |
| 7 | eqid | ⊢ ( 0g ‘ ( EndoFMnd ‘ 𝐴 ) ) = ( 0g ‘ ( EndoFMnd ‘ 𝐴 ) ) | |
| 8 | 6 7 | subm0 | ⊢ ( ( Base ‘ 𝐺 ) ∈ ( SubMnd ‘ ( EndoFMnd ‘ 𝐴 ) ) → ( 0g ‘ ( EndoFMnd ‘ 𝐴 ) ) = ( 0g ‘ 𝐺 ) ) |
| 9 | 5 8 | syl | ⊢ ( 𝐴 ∈ 𝑉 → ( 0g ‘ ( EndoFMnd ‘ 𝐴 ) ) = ( 0g ‘ 𝐺 ) ) |
| 10 | 3 9 | eqtrd | ⊢ ( 𝐴 ∈ 𝑉 → ( I ↾ 𝐴 ) = ( 0g ‘ 𝐺 ) ) |