This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a half-open integer range based at 0. (Contributed by Stefan O'Rear, 15-Aug-2015) (Revised by Mario Carneiro, 29-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfzo0 | ⊢ ( 𝐴 ∈ ( 0 ..^ 𝐵 ) ↔ ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzouz | ⊢ ( 𝐴 ∈ ( 0 ..^ 𝐵 ) → 𝐴 ∈ ( ℤ≥ ‘ 0 ) ) | |
| 2 | elnn0uz | ⊢ ( 𝐴 ∈ ℕ0 ↔ 𝐴 ∈ ( ℤ≥ ‘ 0 ) ) | |
| 3 | 1 2 | sylibr | ⊢ ( 𝐴 ∈ ( 0 ..^ 𝐵 ) → 𝐴 ∈ ℕ0 ) |
| 4 | elfzolt3b | ⊢ ( 𝐴 ∈ ( 0 ..^ 𝐵 ) → 0 ∈ ( 0 ..^ 𝐵 ) ) | |
| 5 | lbfzo0 | ⊢ ( 0 ∈ ( 0 ..^ 𝐵 ) ↔ 𝐵 ∈ ℕ ) | |
| 6 | 4 5 | sylib | ⊢ ( 𝐴 ∈ ( 0 ..^ 𝐵 ) → 𝐵 ∈ ℕ ) |
| 7 | elfzolt2 | ⊢ ( 𝐴 ∈ ( 0 ..^ 𝐵 ) → 𝐴 < 𝐵 ) | |
| 8 | 3 6 7 | 3jca | ⊢ ( 𝐴 ∈ ( 0 ..^ 𝐵 ) → ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) ) |
| 9 | simp1 | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) → 𝐴 ∈ ℕ0 ) | |
| 10 | 9 2 | sylib | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) → 𝐴 ∈ ( ℤ≥ ‘ 0 ) ) |
| 11 | nnz | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℤ ) | |
| 12 | 11 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) → 𝐵 ∈ ℤ ) |
| 13 | simp3 | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) → 𝐴 < 𝐵 ) | |
| 14 | elfzo2 | ⊢ ( 𝐴 ∈ ( 0 ..^ 𝐵 ) ↔ ( 𝐴 ∈ ( ℤ≥ ‘ 0 ) ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵 ) ) | |
| 15 | 10 12 13 14 | syl3anbrc | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) → 𝐴 ∈ ( 0 ..^ 𝐵 ) ) |
| 16 | 8 15 | impbii | ⊢ ( 𝐴 ∈ ( 0 ..^ 𝐵 ) ↔ ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) ) |