This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for prdsxms . The topology generated by the supremum metric is the same as the product topology, when the index set is finite. (Contributed by Mario Carneiro, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsxms.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| prdsxms.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑊 ) | ||
| prdsxms.i | ⊢ ( 𝜑 → 𝐼 ∈ Fin ) | ||
| prdsxms.d | ⊢ 𝐷 = ( dist ‘ 𝑌 ) | ||
| prdsxms.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
| prdsxms.r | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ ∞MetSp ) | ||
| prdsxms.j | ⊢ 𝐽 = ( TopOpen ‘ 𝑌 ) | ||
| prdsxms.v | ⊢ 𝑉 = ( Base ‘ ( 𝑅 ‘ 𝑘 ) ) | ||
| prdsxms.e | ⊢ 𝐸 = ( ( dist ‘ ( 𝑅 ‘ 𝑘 ) ) ↾ ( 𝑉 × 𝑉 ) ) | ||
| prdsxms.k | ⊢ 𝐾 = ( TopOpen ‘ ( 𝑅 ‘ 𝑘 ) ) | ||
| prdsxms.c | ⊢ 𝐶 = { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑘 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ 𝑥 = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) } | ||
| Assertion | prdsxmslem2 | ⊢ ( 𝜑 → 𝐽 = ( MetOpen ‘ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsxms.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| 2 | prdsxms.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑊 ) | |
| 3 | prdsxms.i | ⊢ ( 𝜑 → 𝐼 ∈ Fin ) | |
| 4 | prdsxms.d | ⊢ 𝐷 = ( dist ‘ 𝑌 ) | |
| 5 | prdsxms.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
| 6 | prdsxms.r | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ ∞MetSp ) | |
| 7 | prdsxms.j | ⊢ 𝐽 = ( TopOpen ‘ 𝑌 ) | |
| 8 | prdsxms.v | ⊢ 𝑉 = ( Base ‘ ( 𝑅 ‘ 𝑘 ) ) | |
| 9 | prdsxms.e | ⊢ 𝐸 = ( ( dist ‘ ( 𝑅 ‘ 𝑘 ) ) ↾ ( 𝑉 × 𝑉 ) ) | |
| 10 | prdsxms.k | ⊢ 𝐾 = ( TopOpen ‘ ( 𝑅 ‘ 𝑘 ) ) | |
| 11 | prdsxms.c | ⊢ 𝐶 = { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑘 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ 𝑥 = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) } | |
| 12 | topnfn | ⊢ TopOpen Fn V | |
| 13 | 6 | ffnd | ⊢ ( 𝜑 → 𝑅 Fn 𝐼 ) |
| 14 | dffn2 | ⊢ ( 𝑅 Fn 𝐼 ↔ 𝑅 : 𝐼 ⟶ V ) | |
| 15 | 13 14 | sylib | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ V ) |
| 16 | fnfco | ⊢ ( ( TopOpen Fn V ∧ 𝑅 : 𝐼 ⟶ V ) → ( TopOpen ∘ 𝑅 ) Fn 𝐼 ) | |
| 17 | 12 15 16 | sylancr | ⊢ ( 𝜑 → ( TopOpen ∘ 𝑅 ) Fn 𝐼 ) |
| 18 | 11 | ptval | ⊢ ( ( 𝐼 ∈ Fin ∧ ( TopOpen ∘ 𝑅 ) Fn 𝐼 ) → ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) = ( topGen ‘ 𝐶 ) ) |
| 19 | 3 17 18 | syl2anc | ⊢ ( 𝜑 → ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) = ( topGen ‘ 𝐶 ) ) |
| 20 | eldifsn | ⊢ ( 𝑥 ∈ ( ran ( ball ‘ 𝐷 ) ∖ { ∅ } ) ↔ ( 𝑥 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝑥 ≠ ∅ ) ) | |
| 21 | 1 2 3 4 5 6 | prdsxmslem1 | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝐵 ) ) |
| 22 | blrn | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝐵 ) → ( 𝑥 ∈ ran ( ball ‘ 𝐷 ) ↔ ∃ 𝑝 ∈ 𝐵 ∃ 𝑟 ∈ ℝ* 𝑥 = ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ) ) | |
| 23 | 21 22 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ ran ( ball ‘ 𝐷 ) ↔ ∃ 𝑝 ∈ 𝐵 ∃ 𝑟 ∈ ℝ* 𝑥 = ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ) ) |
| 24 | 21 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ) → 𝐷 ∈ ( ∞Met ‘ 𝐵 ) ) |
| 25 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ) → 𝑝 ∈ 𝐵 ) | |
| 26 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ) → 𝑟 ∈ ℝ* ) | |
| 27 | xbln0 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) → ( ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ≠ ∅ ↔ 0 < 𝑟 ) ) | |
| 28 | 24 25 26 27 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ) → ( ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ≠ ∅ ↔ 0 < 𝑟 ) ) |
| 29 | 3 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → 𝐼 ∈ Fin ) |
| 30 | 29 | mptexd | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) ∈ V ) |
| 31 | ovex | ⊢ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ∈ V | |
| 32 | 31 | rgenw | ⊢ ∀ 𝑛 ∈ 𝐼 ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ∈ V |
| 33 | eqid | ⊢ ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) = ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) | |
| 34 | 33 | fnmpt | ⊢ ( ∀ 𝑛 ∈ 𝐼 ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ∈ V → ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) Fn 𝐼 ) |
| 35 | 32 34 | mp1i | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) Fn 𝐼 ) |
| 36 | 6 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → 𝑅 : 𝐼 ⟶ ∞MetSp ) |
| 37 | 36 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝑅 ‘ 𝑘 ) ∈ ∞MetSp ) |
| 38 | 8 9 | xmsxmet | ⊢ ( ( 𝑅 ‘ 𝑘 ) ∈ ∞MetSp → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) |
| 39 | 37 38 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) ∧ 𝑘 ∈ 𝐼 ) → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) |
| 40 | eqid | ⊢ ( 𝑆 Xs ( 𝑘 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑘 ) ) ) = ( 𝑆 Xs ( 𝑘 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑘 ) ) ) | |
| 41 | eqid | ⊢ ( Base ‘ ( 𝑆 Xs ( 𝑘 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑘 ) ) ) ) = ( Base ‘ ( 𝑆 Xs ( 𝑘 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑘 ) ) ) ) | |
| 42 | 2 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → 𝑆 ∈ 𝑊 ) |
| 43 | 37 | ralrimiva | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → ∀ 𝑘 ∈ 𝐼 ( 𝑅 ‘ 𝑘 ) ∈ ∞MetSp ) |
| 44 | simp2l | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → 𝑝 ∈ 𝐵 ) | |
| 45 | 36 | feqmptd | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → 𝑅 = ( 𝑘 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑘 ) ) ) |
| 46 | 45 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → ( 𝑆 Xs 𝑅 ) = ( 𝑆 Xs ( 𝑘 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑘 ) ) ) ) |
| 47 | 1 46 | eqtrid | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → 𝑌 = ( 𝑆 Xs ( 𝑘 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑘 ) ) ) ) |
| 48 | 47 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → ( Base ‘ 𝑌 ) = ( Base ‘ ( 𝑆 Xs ( 𝑘 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑘 ) ) ) ) ) |
| 49 | 5 48 | eqtrid | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → 𝐵 = ( Base ‘ ( 𝑆 Xs ( 𝑘 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑘 ) ) ) ) ) |
| 50 | 44 49 | eleqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → 𝑝 ∈ ( Base ‘ ( 𝑆 Xs ( 𝑘 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑘 ) ) ) ) ) |
| 51 | 40 41 42 29 43 8 50 | prdsbascl | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → ∀ 𝑘 ∈ 𝐼 ( 𝑝 ‘ 𝑘 ) ∈ 𝑉 ) |
| 52 | 51 | r19.21bi | ⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝑝 ‘ 𝑘 ) ∈ 𝑉 ) |
| 53 | simp2r | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → 𝑟 ∈ ℝ* ) | |
| 54 | 53 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) ∧ 𝑘 ∈ 𝐼 ) → 𝑟 ∈ ℝ* ) |
| 55 | eqid | ⊢ ( MetOpen ‘ 𝐸 ) = ( MetOpen ‘ 𝐸 ) | |
| 56 | 55 | blopn | ⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑉 ∧ 𝑟 ∈ ℝ* ) → ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ∈ ( MetOpen ‘ 𝐸 ) ) |
| 57 | 39 52 54 56 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ∈ ( MetOpen ‘ 𝐸 ) ) |
| 58 | 2fveq3 | ⊢ ( 𝑛 = 𝑘 → ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) = ( dist ‘ ( 𝑅 ‘ 𝑘 ) ) ) | |
| 59 | 2fveq3 | ⊢ ( 𝑛 = 𝑘 → ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) = ( Base ‘ ( 𝑅 ‘ 𝑘 ) ) ) | |
| 60 | 59 8 | eqtr4di | ⊢ ( 𝑛 = 𝑘 → ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) = 𝑉 ) |
| 61 | 60 | sqxpeqd | ⊢ ( 𝑛 = 𝑘 → ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) = ( 𝑉 × 𝑉 ) ) |
| 62 | 58 61 | reseq12d | ⊢ ( 𝑛 = 𝑘 → ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) = ( ( dist ‘ ( 𝑅 ‘ 𝑘 ) ) ↾ ( 𝑉 × 𝑉 ) ) ) |
| 63 | 62 9 | eqtr4di | ⊢ ( 𝑛 = 𝑘 → ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) = 𝐸 ) |
| 64 | 63 | fveq2d | ⊢ ( 𝑛 = 𝑘 → ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) = ( ball ‘ 𝐸 ) ) |
| 65 | fveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝑝 ‘ 𝑛 ) = ( 𝑝 ‘ 𝑘 ) ) | |
| 66 | eqidd | ⊢ ( 𝑛 = 𝑘 → 𝑟 = 𝑟 ) | |
| 67 | 64 65 66 | oveq123d | ⊢ ( 𝑛 = 𝑘 → ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) = ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ) |
| 68 | ovex | ⊢ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ∈ V | |
| 69 | 67 33 68 | fvmpt | ⊢ ( 𝑘 ∈ 𝐼 → ( ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) ‘ 𝑘 ) = ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ) |
| 70 | 69 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) ‘ 𝑘 ) = ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ) |
| 71 | fvco3 | ⊢ ( ( 𝑅 : 𝐼 ⟶ ∞MetSp ∧ 𝑘 ∈ 𝐼 ) → ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) = ( TopOpen ‘ ( 𝑅 ‘ 𝑘 ) ) ) | |
| 72 | 71 10 | eqtr4di | ⊢ ( ( 𝑅 : 𝐼 ⟶ ∞MetSp ∧ 𝑘 ∈ 𝐼 ) → ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) = 𝐾 ) |
| 73 | 36 72 | sylan | ⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) ∧ 𝑘 ∈ 𝐼 ) → ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) = 𝐾 ) |
| 74 | 10 8 9 | xmstopn | ⊢ ( ( 𝑅 ‘ 𝑘 ) ∈ ∞MetSp → 𝐾 = ( MetOpen ‘ 𝐸 ) ) |
| 75 | 37 74 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) ∧ 𝑘 ∈ 𝐼 ) → 𝐾 = ( MetOpen ‘ 𝐸 ) ) |
| 76 | 73 75 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) ∧ 𝑘 ∈ 𝐼 ) → ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) = ( MetOpen ‘ 𝐸 ) ) |
| 77 | 57 70 76 | 3eltr4d | ⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) |
| 78 | 77 | ralrimiva | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → ∀ 𝑘 ∈ 𝐼 ( ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) |
| 79 | 36 | feqmptd | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → 𝑅 = ( 𝑛 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑛 ) ) ) |
| 80 | 79 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → ( 𝑆 Xs 𝑅 ) = ( 𝑆 Xs ( 𝑛 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑛 ) ) ) ) |
| 81 | 1 80 | eqtrid | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → 𝑌 = ( 𝑆 Xs ( 𝑛 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑛 ) ) ) ) |
| 82 | 81 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → ( dist ‘ 𝑌 ) = ( dist ‘ ( 𝑆 Xs ( 𝑛 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑛 ) ) ) ) ) |
| 83 | 4 82 | eqtrid | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → 𝐷 = ( dist ‘ ( 𝑆 Xs ( 𝑛 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑛 ) ) ) ) ) |
| 84 | 83 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → ( ball ‘ 𝐷 ) = ( ball ‘ ( dist ‘ ( 𝑆 Xs ( 𝑛 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑛 ) ) ) ) ) ) |
| 85 | 84 | oveqd | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) = ( 𝑝 ( ball ‘ ( dist ‘ ( 𝑆 Xs ( 𝑛 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) |
| 86 | fveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝑅 ‘ 𝑛 ) = ( 𝑅 ‘ 𝑘 ) ) | |
| 87 | 86 | cbvmptv | ⊢ ( 𝑛 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑛 ) ) = ( 𝑘 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑘 ) ) |
| 88 | 87 | oveq2i | ⊢ ( 𝑆 Xs ( 𝑛 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑛 ) ) ) = ( 𝑆 Xs ( 𝑘 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑘 ) ) ) |
| 89 | eqid | ⊢ ( Base ‘ ( 𝑆 Xs ( 𝑛 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑛 ) ) ) ) = ( Base ‘ ( 𝑆 Xs ( 𝑛 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑛 ) ) ) ) | |
| 90 | eqid | ⊢ ( dist ‘ ( 𝑆 Xs ( 𝑛 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑛 ) ) ) ) = ( dist ‘ ( 𝑆 Xs ( 𝑛 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑛 ) ) ) ) | |
| 91 | 81 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → ( Base ‘ 𝑌 ) = ( Base ‘ ( 𝑆 Xs ( 𝑛 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑛 ) ) ) ) ) |
| 92 | 5 91 | eqtrid | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → 𝐵 = ( Base ‘ ( 𝑆 Xs ( 𝑛 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑛 ) ) ) ) ) |
| 93 | 44 92 | eleqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → 𝑝 ∈ ( Base ‘ ( 𝑆 Xs ( 𝑛 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑛 ) ) ) ) ) |
| 94 | simp3 | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → 0 < 𝑟 ) | |
| 95 | 88 89 8 9 90 42 29 37 39 93 53 94 | prdsbl | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → ( 𝑝 ( ball ‘ ( dist ‘ ( 𝑆 Xs ( 𝑛 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) = X 𝑘 ∈ 𝐼 ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ) |
| 96 | 85 95 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) = X 𝑘 ∈ 𝐼 ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ) |
| 97 | fneq1 | ⊢ ( 𝑔 = ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) → ( 𝑔 Fn 𝐼 ↔ ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) Fn 𝐼 ) ) | |
| 98 | fveq1 | ⊢ ( 𝑔 = ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) → ( 𝑔 ‘ 𝑘 ) = ( ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) ‘ 𝑘 ) ) | |
| 99 | 98 | eleq1d | ⊢ ( 𝑔 = ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) → ( ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ↔ ( ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ) |
| 100 | 99 | ralbidv | ⊢ ( 𝑔 = ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) → ( ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ↔ ∀ 𝑘 ∈ 𝐼 ( ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ) |
| 101 | 97 100 | anbi12d | ⊢ ( 𝑔 = ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) → ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ↔ ( ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ) ) |
| 102 | 98 69 | sylan9eq | ⊢ ( ( 𝑔 = ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝑔 ‘ 𝑘 ) = ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ) |
| 103 | 102 | ixpeq2dva | ⊢ ( 𝑔 = ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) → X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) = X 𝑘 ∈ 𝐼 ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ) |
| 104 | 103 | eqeq2d | ⊢ ( 𝑔 = ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) → ( ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ↔ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) = X 𝑘 ∈ 𝐼 ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) |
| 105 | 101 104 | anbi12d | ⊢ ( 𝑔 = ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) → ( ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ↔ ( ( ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) = X 𝑘 ∈ 𝐼 ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) |
| 106 | 105 | spcegv | ⊢ ( ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) ∈ V → ( ( ( ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) = X 𝑘 ∈ 𝐼 ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ) → ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) |
| 107 | 106 | 3impib | ⊢ ( ( ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) ∈ V ∧ ( ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) = X 𝑘 ∈ 𝐼 ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ) → ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ) |
| 108 | 30 35 78 96 107 | syl121anc | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ) |
| 109 | 108 | 3expia | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ) → ( 0 < 𝑟 → ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) |
| 110 | 28 109 | sylbid | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ) → ( ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ≠ ∅ → ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) |
| 111 | 110 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ) ∧ 𝑥 = ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ) → ( ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ≠ ∅ → ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) |
| 112 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ) ∧ 𝑥 = ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ) → 𝑥 = ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ) | |
| 113 | 112 | neeq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ) ∧ 𝑥 = ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ) → ( 𝑥 ≠ ∅ ↔ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ≠ ∅ ) ) |
| 114 | df-3an | ⊢ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑘 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ↔ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑘 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ) | |
| 115 | ral0 | ⊢ ∀ 𝑘 ∈ ∅ ( 𝑔 ‘ 𝑘 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) | |
| 116 | difeq2 | ⊢ ( 𝑧 = 𝐼 → ( 𝐼 ∖ 𝑧 ) = ( 𝐼 ∖ 𝐼 ) ) | |
| 117 | difid | ⊢ ( 𝐼 ∖ 𝐼 ) = ∅ | |
| 118 | 116 117 | eqtrdi | ⊢ ( 𝑧 = 𝐼 → ( 𝐼 ∖ 𝑧 ) = ∅ ) |
| 119 | 118 | raleqdv | ⊢ ( 𝑧 = 𝐼 → ( ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑘 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ↔ ∀ 𝑘 ∈ ∅ ( 𝑔 ‘ 𝑘 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ) |
| 120 | 119 | rspcev | ⊢ ( ( 𝐼 ∈ Fin ∧ ∀ 𝑘 ∈ ∅ ( 𝑔 ‘ 𝑘 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) → ∃ 𝑧 ∈ Fin ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑘 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) |
| 121 | 3 115 120 | sylancl | ⊢ ( 𝜑 → ∃ 𝑧 ∈ Fin ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑘 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) |
| 122 | 121 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ) → ∃ 𝑧 ∈ Fin ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑘 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) |
| 123 | 122 | biantrud | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ) → ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ↔ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑘 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ) ) |
| 124 | 114 123 | bitr4id | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ) → ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑘 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ↔ ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ) ) |
| 125 | eqeq1 | ⊢ ( 𝑥 = ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) → ( 𝑥 = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ↔ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ) | |
| 126 | 124 125 | bi2anan9 | ⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ) ∧ 𝑥 = ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ) → ( ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑘 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ 𝑥 = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ↔ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) |
| 127 | 126 | exbidv | ⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ) ∧ 𝑥 = ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ) → ( ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑘 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ 𝑥 = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ↔ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) |
| 128 | 111 113 127 | 3imtr4d | ⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ) ∧ 𝑥 = ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ) → ( 𝑥 ≠ ∅ → ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑘 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ 𝑥 = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) |
| 129 | 128 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ) → ( 𝑥 = ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) → ( 𝑥 ≠ ∅ → ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑘 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ 𝑥 = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) ) |
| 130 | 129 | rexlimdvva | ⊢ ( 𝜑 → ( ∃ 𝑝 ∈ 𝐵 ∃ 𝑟 ∈ ℝ* 𝑥 = ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) → ( 𝑥 ≠ ∅ → ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑘 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ 𝑥 = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) ) |
| 131 | 23 130 | sylbid | ⊢ ( 𝜑 → ( 𝑥 ∈ ran ( ball ‘ 𝐷 ) → ( 𝑥 ≠ ∅ → ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑘 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ 𝑥 = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) ) |
| 132 | 131 | impd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝑥 ≠ ∅ ) → ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑘 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ 𝑥 = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) |
| 133 | 20 132 | biimtrid | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ran ( ball ‘ 𝐷 ) ∖ { ∅ } ) → ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑘 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ 𝑥 = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) |
| 134 | 133 | alrimiv | ⊢ ( 𝜑 → ∀ 𝑥 ( 𝑥 ∈ ( ran ( ball ‘ 𝐷 ) ∖ { ∅ } ) → ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑘 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ 𝑥 = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) |
| 135 | ssab | ⊢ ( ( ran ( ball ‘ 𝐷 ) ∖ { ∅ } ) ⊆ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑘 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ 𝑥 = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) } ↔ ∀ 𝑥 ( 𝑥 ∈ ( ran ( ball ‘ 𝐷 ) ∖ { ∅ } ) → ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑘 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ 𝑥 = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) | |
| 136 | 134 135 | sylibr | ⊢ ( 𝜑 → ( ran ( ball ‘ 𝐷 ) ∖ { ∅ } ) ⊆ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑘 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ 𝑥 = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) } ) |
| 137 | 136 11 | sseqtrrdi | ⊢ ( 𝜑 → ( ran ( ball ‘ 𝐷 ) ∖ { ∅ } ) ⊆ 𝐶 ) |
| 138 | ssv | ⊢ ∞MetSp ⊆ V | |
| 139 | fnssres | ⊢ ( ( TopOpen Fn V ∧ ∞MetSp ⊆ V ) → ( TopOpen ↾ ∞MetSp ) Fn ∞MetSp ) | |
| 140 | 12 138 139 | mp2an | ⊢ ( TopOpen ↾ ∞MetSp ) Fn ∞MetSp |
| 141 | fvres | ⊢ ( 𝑥 ∈ ∞MetSp → ( ( TopOpen ↾ ∞MetSp ) ‘ 𝑥 ) = ( TopOpen ‘ 𝑥 ) ) | |
| 142 | xmstps | ⊢ ( 𝑥 ∈ ∞MetSp → 𝑥 ∈ TopSp ) | |
| 143 | eqid | ⊢ ( TopOpen ‘ 𝑥 ) = ( TopOpen ‘ 𝑥 ) | |
| 144 | 143 | tpstop | ⊢ ( 𝑥 ∈ TopSp → ( TopOpen ‘ 𝑥 ) ∈ Top ) |
| 145 | 142 144 | syl | ⊢ ( 𝑥 ∈ ∞MetSp → ( TopOpen ‘ 𝑥 ) ∈ Top ) |
| 146 | 141 145 | eqeltrd | ⊢ ( 𝑥 ∈ ∞MetSp → ( ( TopOpen ↾ ∞MetSp ) ‘ 𝑥 ) ∈ Top ) |
| 147 | 146 | rgen | ⊢ ∀ 𝑥 ∈ ∞MetSp ( ( TopOpen ↾ ∞MetSp ) ‘ 𝑥 ) ∈ Top |
| 148 | ffnfv | ⊢ ( ( TopOpen ↾ ∞MetSp ) : ∞MetSp ⟶ Top ↔ ( ( TopOpen ↾ ∞MetSp ) Fn ∞MetSp ∧ ∀ 𝑥 ∈ ∞MetSp ( ( TopOpen ↾ ∞MetSp ) ‘ 𝑥 ) ∈ Top ) ) | |
| 149 | 140 147 148 | mpbir2an | ⊢ ( TopOpen ↾ ∞MetSp ) : ∞MetSp ⟶ Top |
| 150 | fco2 | ⊢ ( ( ( TopOpen ↾ ∞MetSp ) : ∞MetSp ⟶ Top ∧ 𝑅 : 𝐼 ⟶ ∞MetSp ) → ( TopOpen ∘ 𝑅 ) : 𝐼 ⟶ Top ) | |
| 151 | 149 6 150 | sylancr | ⊢ ( 𝜑 → ( TopOpen ∘ 𝑅 ) : 𝐼 ⟶ Top ) |
| 152 | eqid | ⊢ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) = X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) | |
| 153 | 11 152 | ptbasfi | ⊢ ( ( 𝐼 ∈ Fin ∧ ( TopOpen ∘ 𝑅 ) : 𝐼 ⟶ Top ) → 𝐶 = ( fi ‘ ( { X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) } ∪ ran ( 𝑚 ∈ 𝐼 , 𝑢 ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑚 ) ↦ ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑚 ) ) “ 𝑢 ) ) ) ) ) |
| 154 | 3 151 153 | syl2anc | ⊢ ( 𝜑 → 𝐶 = ( fi ‘ ( { X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) } ∪ ran ( 𝑚 ∈ 𝐼 , 𝑢 ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑚 ) ↦ ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑚 ) ) “ 𝑢 ) ) ) ) ) |
| 155 | eqid | ⊢ ( MetOpen ‘ 𝐷 ) = ( MetOpen ‘ 𝐷 ) | |
| 156 | 155 | mopntop | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝐵 ) → ( MetOpen ‘ 𝐷 ) ∈ Top ) |
| 157 | 21 156 | syl | ⊢ ( 𝜑 → ( MetOpen ‘ 𝐷 ) ∈ Top ) |
| 158 | 1 5 2 3 13 | prdsbas2 | ⊢ ( 𝜑 → 𝐵 = X 𝑘 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑘 ) ) ) |
| 159 | 6 72 | sylan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) = 𝐾 ) |
| 160 | 6 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝑅 ‘ 𝑘 ) ∈ ∞MetSp ) |
| 161 | xmstps | ⊢ ( ( 𝑅 ‘ 𝑘 ) ∈ ∞MetSp → ( 𝑅 ‘ 𝑘 ) ∈ TopSp ) | |
| 162 | 160 161 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝑅 ‘ 𝑘 ) ∈ TopSp ) |
| 163 | 8 10 | istps | ⊢ ( ( 𝑅 ‘ 𝑘 ) ∈ TopSp ↔ 𝐾 ∈ ( TopOn ‘ 𝑉 ) ) |
| 164 | 162 163 | sylib | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → 𝐾 ∈ ( TopOn ‘ 𝑉 ) ) |
| 165 | 159 164 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ∈ ( TopOn ‘ 𝑉 ) ) |
| 166 | toponuni | ⊢ ( ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ∈ ( TopOn ‘ 𝑉 ) → 𝑉 = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) | |
| 167 | 165 166 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → 𝑉 = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) |
| 168 | 8 167 | eqtr3id | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( Base ‘ ( 𝑅 ‘ 𝑘 ) ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) |
| 169 | 168 | ixpeq2dva | ⊢ ( 𝜑 → X 𝑘 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑘 ) ) = X 𝑘 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) |
| 170 | 158 169 | eqtrd | ⊢ ( 𝜑 → 𝐵 = X 𝑘 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) |
| 171 | fveq2 | ⊢ ( 𝑘 = 𝑛 → ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) = ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ) | |
| 172 | 171 | unieqd | ⊢ ( 𝑘 = 𝑛 → ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ) |
| 173 | 172 | cbvixpv | ⊢ X 𝑘 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) = X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) |
| 174 | 170 173 | eqtrdi | ⊢ ( 𝜑 → 𝐵 = X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ) |
| 175 | 155 | mopntopon | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝐵 ) → ( MetOpen ‘ 𝐷 ) ∈ ( TopOn ‘ 𝐵 ) ) |
| 176 | 21 175 | syl | ⊢ ( 𝜑 → ( MetOpen ‘ 𝐷 ) ∈ ( TopOn ‘ 𝐵 ) ) |
| 177 | toponmax | ⊢ ( ( MetOpen ‘ 𝐷 ) ∈ ( TopOn ‘ 𝐵 ) → 𝐵 ∈ ( MetOpen ‘ 𝐷 ) ) | |
| 178 | 176 177 | syl | ⊢ ( 𝜑 → 𝐵 ∈ ( MetOpen ‘ 𝐷 ) ) |
| 179 | 174 178 | eqeltrrd | ⊢ ( 𝜑 → X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ∈ ( MetOpen ‘ 𝐷 ) ) |
| 180 | 179 | snssd | ⊢ ( 𝜑 → { X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) } ⊆ ( MetOpen ‘ 𝐷 ) ) |
| 181 | 174 | mpteq1d | ⊢ ( 𝜑 → ( 𝑤 ∈ 𝐵 ↦ ( 𝑤 ‘ 𝑘 ) ) = ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) ) |
| 182 | 181 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑢 ∈ 𝐾 ) → ( 𝑤 ∈ 𝐵 ↦ ( 𝑤 ‘ 𝑘 ) ) = ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) ) |
| 183 | 182 | cnveqd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑢 ∈ 𝐾 ) → ◡ ( 𝑤 ∈ 𝐵 ↦ ( 𝑤 ‘ 𝑘 ) ) = ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) ) |
| 184 | 183 | imaeq1d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑢 ∈ 𝐾 ) → ( ◡ ( 𝑤 ∈ 𝐵 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) = ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) |
| 185 | fveq1 | ⊢ ( 𝑤 = 𝑝 → ( 𝑤 ‘ 𝑘 ) = ( 𝑝 ‘ 𝑘 ) ) | |
| 186 | 185 | eleq1d | ⊢ ( 𝑤 = 𝑝 → ( ( 𝑤 ‘ 𝑘 ) ∈ 𝑢 ↔ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) |
| 187 | eqid | ⊢ ( 𝑤 ∈ 𝐵 ↦ ( 𝑤 ‘ 𝑘 ) ) = ( 𝑤 ∈ 𝐵 ↦ ( 𝑤 ‘ 𝑘 ) ) | |
| 188 | 187 | mptpreima | ⊢ ( ◡ ( 𝑤 ∈ 𝐵 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) = { 𝑤 ∈ 𝐵 ∣ ( 𝑤 ‘ 𝑘 ) ∈ 𝑢 } |
| 189 | 186 188 | elrab2 | ⊢ ( 𝑝 ∈ ( ◡ ( 𝑤 ∈ 𝐵 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ↔ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) |
| 190 | 160 38 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) |
| 191 | 190 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) ) → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) |
| 192 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) ) → 𝑢 ∈ 𝐾 ) | |
| 193 | 160 74 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → 𝐾 = ( MetOpen ‘ 𝐸 ) ) |
| 194 | 193 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) ) → 𝐾 = ( MetOpen ‘ 𝐸 ) ) |
| 195 | 192 194 | eleqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) ) → 𝑢 ∈ ( MetOpen ‘ 𝐸 ) ) |
| 196 | simprrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) ) → ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) | |
| 197 | 55 | mopni2 | ⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ 𝑢 ∈ ( MetOpen ‘ 𝐸 ) ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) → ∃ 𝑟 ∈ ℝ+ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ⊆ 𝑢 ) |
| 198 | 191 195 196 197 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) ) → ∃ 𝑟 ∈ ℝ+ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ⊆ 𝑢 ) |
| 199 | 21 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ⊆ 𝑢 ) ) → 𝐷 ∈ ( ∞Met ‘ 𝐵 ) ) |
| 200 | simprrl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) ) → 𝑝 ∈ 𝐵 ) | |
| 201 | 200 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ⊆ 𝑢 ) ) → 𝑝 ∈ 𝐵 ) |
| 202 | rpxr | ⊢ ( 𝑟 ∈ ℝ+ → 𝑟 ∈ ℝ* ) | |
| 203 | 202 | ad2antrl | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ⊆ 𝑢 ) ) → 𝑟 ∈ ℝ* ) |
| 204 | 155 | blopn | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) → ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ∈ ( MetOpen ‘ 𝐷 ) ) |
| 205 | 199 201 203 204 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ⊆ 𝑢 ) ) → ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ∈ ( MetOpen ‘ 𝐷 ) ) |
| 206 | simprl | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ⊆ 𝑢 ) ) → 𝑟 ∈ ℝ+ ) | |
| 207 | blcntr | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) → 𝑝 ∈ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ) | |
| 208 | 199 201 206 207 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ⊆ 𝑢 ) ) → 𝑝 ∈ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ) |
| 209 | blssm | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) → ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝐵 ) | |
| 210 | 199 201 203 209 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ⊆ 𝑢 ) ) → ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝐵 ) |
| 211 | simplrr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ⊆ 𝑢 ) ) ∧ 𝑤 ∈ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ) → ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ⊆ 𝑢 ) | |
| 212 | simplll | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ⊆ 𝑢 ) ) → 𝜑 ) | |
| 213 | rpgt0 | ⊢ ( 𝑟 ∈ ℝ+ → 0 < 𝑟 ) | |
| 214 | 213 | ad2antrl | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ⊆ 𝑢 ) ) → 0 < 𝑟 ) |
| 215 | 212 201 203 214 96 | syl121anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ⊆ 𝑢 ) ) → ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) = X 𝑘 ∈ 𝐼 ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ) |
| 216 | 215 | eleq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ⊆ 𝑢 ) ) → ( 𝑤 ∈ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ↔ 𝑤 ∈ X 𝑘 ∈ 𝐼 ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) |
| 217 | 216 | biimpa | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ⊆ 𝑢 ) ) ∧ 𝑤 ∈ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ) → 𝑤 ∈ X 𝑘 ∈ 𝐼 ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ) |
| 218 | vex | ⊢ 𝑤 ∈ V | |
| 219 | 218 | elixp | ⊢ ( 𝑤 ∈ X 𝑘 ∈ 𝐼 ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ↔ ( 𝑤 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑤 ‘ 𝑘 ) ∈ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) |
| 220 | 219 | simprbi | ⊢ ( 𝑤 ∈ X 𝑘 ∈ 𝐼 ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) → ∀ 𝑘 ∈ 𝐼 ( 𝑤 ‘ 𝑘 ) ∈ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ) |
| 221 | 217 220 | syl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ⊆ 𝑢 ) ) ∧ 𝑤 ∈ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ) → ∀ 𝑘 ∈ 𝐼 ( 𝑤 ‘ 𝑘 ) ∈ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ) |
| 222 | simp-4r | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ⊆ 𝑢 ) ) ∧ 𝑤 ∈ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ) → 𝑘 ∈ 𝐼 ) | |
| 223 | rsp | ⊢ ( ∀ 𝑘 ∈ 𝐼 ( 𝑤 ‘ 𝑘 ) ∈ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) → ( 𝑘 ∈ 𝐼 → ( 𝑤 ‘ 𝑘 ) ∈ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) | |
| 224 | 221 222 223 | sylc | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ⊆ 𝑢 ) ) ∧ 𝑤 ∈ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ) → ( 𝑤 ‘ 𝑘 ) ∈ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ) |
| 225 | 211 224 | sseldd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ⊆ 𝑢 ) ) ∧ 𝑤 ∈ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ) → ( 𝑤 ‘ 𝑘 ) ∈ 𝑢 ) |
| 226 | 210 225 | ssrabdv | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ⊆ 𝑢 ) ) → ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ { 𝑤 ∈ 𝐵 ∣ ( 𝑤 ‘ 𝑘 ) ∈ 𝑢 } ) |
| 227 | 226 188 | sseqtrrdi | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ⊆ 𝑢 ) ) → ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ ( ◡ ( 𝑤 ∈ 𝐵 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) |
| 228 | eleq2 | ⊢ ( 𝑦 = ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) → ( 𝑝 ∈ 𝑦 ↔ 𝑝 ∈ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ) ) | |
| 229 | sseq1 | ⊢ ( 𝑦 = ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) → ( 𝑦 ⊆ ( ◡ ( 𝑤 ∈ 𝐵 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ↔ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ ( ◡ ( 𝑤 ∈ 𝐵 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) | |
| 230 | 228 229 | anbi12d | ⊢ ( 𝑦 = ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) → ( ( 𝑝 ∈ 𝑦 ∧ 𝑦 ⊆ ( ◡ ( 𝑤 ∈ 𝐵 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ↔ ( 𝑝 ∈ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ∧ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ ( ◡ ( 𝑤 ∈ 𝐵 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) |
| 231 | 230 | rspcev | ⊢ ( ( ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ∈ ( MetOpen ‘ 𝐷 ) ∧ ( 𝑝 ∈ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ∧ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ ( ◡ ( 𝑤 ∈ 𝐵 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) → ∃ 𝑦 ∈ ( MetOpen ‘ 𝐷 ) ( 𝑝 ∈ 𝑦 ∧ 𝑦 ⊆ ( ◡ ( 𝑤 ∈ 𝐵 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) |
| 232 | 205 208 227 231 | syl12anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ⊆ 𝑢 ) ) → ∃ 𝑦 ∈ ( MetOpen ‘ 𝐷 ) ( 𝑝 ∈ 𝑦 ∧ 𝑦 ⊆ ( ◡ ( 𝑤 ∈ 𝐵 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) |
| 233 | 198 232 | rexlimddv | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) ) → ∃ 𝑦 ∈ ( MetOpen ‘ 𝐷 ) ( 𝑝 ∈ 𝑦 ∧ 𝑦 ⊆ ( ◡ ( 𝑤 ∈ 𝐵 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) |
| 234 | 233 | expr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑢 ∈ 𝐾 ) → ( ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) → ∃ 𝑦 ∈ ( MetOpen ‘ 𝐷 ) ( 𝑝 ∈ 𝑦 ∧ 𝑦 ⊆ ( ◡ ( 𝑤 ∈ 𝐵 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) |
| 235 | 189 234 | biimtrid | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑢 ∈ 𝐾 ) → ( 𝑝 ∈ ( ◡ ( 𝑤 ∈ 𝐵 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) → ∃ 𝑦 ∈ ( MetOpen ‘ 𝐷 ) ( 𝑝 ∈ 𝑦 ∧ 𝑦 ⊆ ( ◡ ( 𝑤 ∈ 𝐵 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) |
| 236 | 235 | ralrimiv | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑢 ∈ 𝐾 ) → ∀ 𝑝 ∈ ( ◡ ( 𝑤 ∈ 𝐵 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∃ 𝑦 ∈ ( MetOpen ‘ 𝐷 ) ( 𝑝 ∈ 𝑦 ∧ 𝑦 ⊆ ( ◡ ( 𝑤 ∈ 𝐵 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) |
| 237 | 157 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑢 ∈ 𝐾 ) → ( MetOpen ‘ 𝐷 ) ∈ Top ) |
| 238 | eltop2 | ⊢ ( ( MetOpen ‘ 𝐷 ) ∈ Top → ( ( ◡ ( 𝑤 ∈ 𝐵 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∈ ( MetOpen ‘ 𝐷 ) ↔ ∀ 𝑝 ∈ ( ◡ ( 𝑤 ∈ 𝐵 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∃ 𝑦 ∈ ( MetOpen ‘ 𝐷 ) ( 𝑝 ∈ 𝑦 ∧ 𝑦 ⊆ ( ◡ ( 𝑤 ∈ 𝐵 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) | |
| 239 | 237 238 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑢 ∈ 𝐾 ) → ( ( ◡ ( 𝑤 ∈ 𝐵 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∈ ( MetOpen ‘ 𝐷 ) ↔ ∀ 𝑝 ∈ ( ◡ ( 𝑤 ∈ 𝐵 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∃ 𝑦 ∈ ( MetOpen ‘ 𝐷 ) ( 𝑝 ∈ 𝑦 ∧ 𝑦 ⊆ ( ◡ ( 𝑤 ∈ 𝐵 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) |
| 240 | 236 239 | mpbird | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑢 ∈ 𝐾 ) → ( ◡ ( 𝑤 ∈ 𝐵 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∈ ( MetOpen ‘ 𝐷 ) ) |
| 241 | 184 240 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑢 ∈ 𝐾 ) → ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∈ ( MetOpen ‘ 𝐷 ) ) |
| 242 | 241 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ∀ 𝑢 ∈ 𝐾 ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∈ ( MetOpen ‘ 𝐷 ) ) |
| 243 | 242 159 | raleqtrrdv | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ∀ 𝑢 ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∈ ( MetOpen ‘ 𝐷 ) ) |
| 244 | 243 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐼 ∀ 𝑢 ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∈ ( MetOpen ‘ 𝐷 ) ) |
| 245 | fveq2 | ⊢ ( 𝑘 = 𝑚 → ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) = ( ( TopOpen ∘ 𝑅 ) ‘ 𝑚 ) ) | |
| 246 | fveq2 | ⊢ ( 𝑘 = 𝑚 → ( 𝑤 ‘ 𝑘 ) = ( 𝑤 ‘ 𝑚 ) ) | |
| 247 | 246 | mpteq2dv | ⊢ ( 𝑘 = 𝑚 → ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) = ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑚 ) ) ) |
| 248 | 247 | cnveqd | ⊢ ( 𝑘 = 𝑚 → ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) = ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑚 ) ) ) |
| 249 | 248 | imaeq1d | ⊢ ( 𝑘 = 𝑚 → ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) = ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑚 ) ) “ 𝑢 ) ) |
| 250 | 249 | eleq1d | ⊢ ( 𝑘 = 𝑚 → ( ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∈ ( MetOpen ‘ 𝐷 ) ↔ ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑚 ) ) “ 𝑢 ) ∈ ( MetOpen ‘ 𝐷 ) ) ) |
| 251 | 245 250 | raleqbidv | ⊢ ( 𝑘 = 𝑚 → ( ∀ 𝑢 ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∈ ( MetOpen ‘ 𝐷 ) ↔ ∀ 𝑢 ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑚 ) ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑚 ) ) “ 𝑢 ) ∈ ( MetOpen ‘ 𝐷 ) ) ) |
| 252 | 251 | cbvralvw | ⊢ ( ∀ 𝑘 ∈ 𝐼 ∀ 𝑢 ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∈ ( MetOpen ‘ 𝐷 ) ↔ ∀ 𝑚 ∈ 𝐼 ∀ 𝑢 ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑚 ) ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑚 ) ) “ 𝑢 ) ∈ ( MetOpen ‘ 𝐷 ) ) |
| 253 | 244 252 | sylib | ⊢ ( 𝜑 → ∀ 𝑚 ∈ 𝐼 ∀ 𝑢 ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑚 ) ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑚 ) ) “ 𝑢 ) ∈ ( MetOpen ‘ 𝐷 ) ) |
| 254 | eqid | ⊢ ( 𝑚 ∈ 𝐼 , 𝑢 ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑚 ) ↦ ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑚 ) ) “ 𝑢 ) ) = ( 𝑚 ∈ 𝐼 , 𝑢 ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑚 ) ↦ ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑚 ) ) “ 𝑢 ) ) | |
| 255 | 254 | fmpox | ⊢ ( ∀ 𝑚 ∈ 𝐼 ∀ 𝑢 ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑚 ) ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑚 ) ) “ 𝑢 ) ∈ ( MetOpen ‘ 𝐷 ) ↔ ( 𝑚 ∈ 𝐼 , 𝑢 ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑚 ) ↦ ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑚 ) ) “ 𝑢 ) ) : ∪ 𝑚 ∈ 𝐼 ( { 𝑚 } × ( ( TopOpen ∘ 𝑅 ) ‘ 𝑚 ) ) ⟶ ( MetOpen ‘ 𝐷 ) ) |
| 256 | 253 255 | sylib | ⊢ ( 𝜑 → ( 𝑚 ∈ 𝐼 , 𝑢 ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑚 ) ↦ ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑚 ) ) “ 𝑢 ) ) : ∪ 𝑚 ∈ 𝐼 ( { 𝑚 } × ( ( TopOpen ∘ 𝑅 ) ‘ 𝑚 ) ) ⟶ ( MetOpen ‘ 𝐷 ) ) |
| 257 | 256 | frnd | ⊢ ( 𝜑 → ran ( 𝑚 ∈ 𝐼 , 𝑢 ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑚 ) ↦ ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑚 ) ) “ 𝑢 ) ) ⊆ ( MetOpen ‘ 𝐷 ) ) |
| 258 | 180 257 | unssd | ⊢ ( 𝜑 → ( { X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) } ∪ ran ( 𝑚 ∈ 𝐼 , 𝑢 ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑚 ) ↦ ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑚 ) ) “ 𝑢 ) ) ) ⊆ ( MetOpen ‘ 𝐷 ) ) |
| 259 | fiss | ⊢ ( ( ( MetOpen ‘ 𝐷 ) ∈ Top ∧ ( { X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) } ∪ ran ( 𝑚 ∈ 𝐼 , 𝑢 ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑚 ) ↦ ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑚 ) ) “ 𝑢 ) ) ) ⊆ ( MetOpen ‘ 𝐷 ) ) → ( fi ‘ ( { X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) } ∪ ran ( 𝑚 ∈ 𝐼 , 𝑢 ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑚 ) ↦ ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑚 ) ) “ 𝑢 ) ) ) ) ⊆ ( fi ‘ ( MetOpen ‘ 𝐷 ) ) ) | |
| 260 | 157 258 259 | syl2anc | ⊢ ( 𝜑 → ( fi ‘ ( { X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) } ∪ ran ( 𝑚 ∈ 𝐼 , 𝑢 ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑚 ) ↦ ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑚 ) ) “ 𝑢 ) ) ) ) ⊆ ( fi ‘ ( MetOpen ‘ 𝐷 ) ) ) |
| 261 | 154 260 | eqsstrd | ⊢ ( 𝜑 → 𝐶 ⊆ ( fi ‘ ( MetOpen ‘ 𝐷 ) ) ) |
| 262 | fitop | ⊢ ( ( MetOpen ‘ 𝐷 ) ∈ Top → ( fi ‘ ( MetOpen ‘ 𝐷 ) ) = ( MetOpen ‘ 𝐷 ) ) | |
| 263 | 157 262 | syl | ⊢ ( 𝜑 → ( fi ‘ ( MetOpen ‘ 𝐷 ) ) = ( MetOpen ‘ 𝐷 ) ) |
| 264 | 155 | mopnval | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝐵 ) → ( MetOpen ‘ 𝐷 ) = ( topGen ‘ ran ( ball ‘ 𝐷 ) ) ) |
| 265 | 21 264 | syl | ⊢ ( 𝜑 → ( MetOpen ‘ 𝐷 ) = ( topGen ‘ ran ( ball ‘ 𝐷 ) ) ) |
| 266 | tgdif0 | ⊢ ( topGen ‘ ( ran ( ball ‘ 𝐷 ) ∖ { ∅ } ) ) = ( topGen ‘ ran ( ball ‘ 𝐷 ) ) | |
| 267 | 265 266 | eqtr4di | ⊢ ( 𝜑 → ( MetOpen ‘ 𝐷 ) = ( topGen ‘ ( ran ( ball ‘ 𝐷 ) ∖ { ∅ } ) ) ) |
| 268 | 263 267 | eqtrd | ⊢ ( 𝜑 → ( fi ‘ ( MetOpen ‘ 𝐷 ) ) = ( topGen ‘ ( ran ( ball ‘ 𝐷 ) ∖ { ∅ } ) ) ) |
| 269 | 261 268 | sseqtrd | ⊢ ( 𝜑 → 𝐶 ⊆ ( topGen ‘ ( ran ( ball ‘ 𝐷 ) ∖ { ∅ } ) ) ) |
| 270 | 2basgen | ⊢ ( ( ( ran ( ball ‘ 𝐷 ) ∖ { ∅ } ) ⊆ 𝐶 ∧ 𝐶 ⊆ ( topGen ‘ ( ran ( ball ‘ 𝐷 ) ∖ { ∅ } ) ) ) → ( topGen ‘ ( ran ( ball ‘ 𝐷 ) ∖ { ∅ } ) ) = ( topGen ‘ 𝐶 ) ) | |
| 271 | 137 269 270 | syl2anc | ⊢ ( 𝜑 → ( topGen ‘ ( ran ( ball ‘ 𝐷 ) ∖ { ∅ } ) ) = ( topGen ‘ 𝐶 ) ) |
| 272 | 19 271 | eqtr4d | ⊢ ( 𝜑 → ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) = ( topGen ‘ ( ran ( ball ‘ 𝐷 ) ∖ { ∅ } ) ) ) |
| 273 | 1 2 3 13 7 | prdstopn | ⊢ ( 𝜑 → 𝐽 = ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ) |
| 274 | 272 273 267 | 3eqtr4d | ⊢ ( 𝜑 → 𝐽 = ( MetOpen ‘ 𝐷 ) ) |