This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element of the base has projections closed in the factors. (Contributed by Mario Carneiro, 27-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsbasmpt2.y | ⊢ 𝑌 = ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) | |
| prdsbasmpt2.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
| prdsbasmpt2.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | ||
| prdsbasmpt2.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| prdsbasmpt2.r | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 𝑅 ∈ 𝑋 ) | ||
| prdsbasmpt2.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| prdsbascl.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | ||
| Assertion | prdsbascl | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) ∈ 𝐾 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsbasmpt2.y | ⊢ 𝑌 = ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) | |
| 2 | prdsbasmpt2.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
| 3 | prdsbasmpt2.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | |
| 4 | prdsbasmpt2.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 5 | prdsbasmpt2.r | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 𝑅 ∈ 𝑋 ) | |
| 6 | prdsbasmpt2.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 7 | prdsbascl.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | |
| 8 | eqid | ⊢ ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) = ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) | |
| 9 | 8 | fnmpt | ⊢ ( ∀ 𝑥 ∈ 𝐼 𝑅 ∈ 𝑋 → ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) Fn 𝐼 ) |
| 10 | 5 9 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) Fn 𝐼 ) |
| 11 | 1 2 3 4 10 7 | prdsbasfn | ⊢ ( 𝜑 → 𝐹 Fn 𝐼 ) |
| 12 | dffn5 | ⊢ ( 𝐹 Fn 𝐼 ↔ 𝐹 = ( 𝑥 ∈ 𝐼 ↦ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 13 | 11 12 | sylib | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐼 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 14 | 13 7 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐵 ) |
| 15 | 1 2 3 4 5 6 | prdsbasmpt2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐼 ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐵 ↔ ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) ∈ 𝐾 ) ) |
| 16 | 14 15 | mpbid | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) ∈ 𝐾 ) |